MHB How precise is (4/3)^4 compared to π?

mathdad
Messages
1,280
Reaction score
0
The value of the irrational number π, correct to ten decimal places (without rounding) is 3.1415926535. By using your calculator, determine to how many decimal places does the quantity (4/3)^4 agree with π.
 
Mathematics news on Phys.org
RTCNTC said:
The value of the irrational number π, correct to ten decimal places (without rounding) is 3.1415926535. By using your calculator, determine to how many decimal places does the quantity (4/3)^4 agree with π.
Is there a typo in this? The calculation seems to give a result that is not accurate at all.

[math]\left ( \frac{4}{3} \right ) ^4 \approx 3.1605[/math]

You can take it from there.

-Dan
 
topsquark said:
Is there a typo in this? The calculation seems to give a result that is not accurate at all.

[math]\left ( \frac{4}{3} \right ) ^4 \approx 3.1605[/math]

You can take it from there.

-Dan

Ok. I will check the textbook. However, I am sure there is no typo. I will come back later tonight.
 
RTCNTC said:
The value of the irrational number π, correct to ten decimal places (without rounding) is 3.1415926535. By using your calculator, determine to how many decimal places does the quantity (4/3)^4 agree with π.
Couldn't you have just done this? Using a calculator, as the problem says, (4/3)^4= 3.1604938271604938271604938271605. That "agrees with π" to one decimal place ("3.1") since it differs in the second decimal place ("6" instead of "4").
 
Thank you everyone.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top