How to calculate expectation and variance of kernel density estimator?

Click For Summary
SUMMARY

The discussion centers on calculating the expectation and variance of the kernel density estimator defined as $$f_n(t)=\frac{1}{n}\sum_{i=1}^n \frac{1}{h}k\left(\frac{t-x_i}{h}\right)$$, where observations are i.i.d. from a random variable with an unknown distribution. Key results include the expectation $$\mathbb{E}[f_n(t)]=\int_{\mathbb{R}} k(u) f(t-hu)\mathrm{d}u$$ and the variance $$\mathrm{Var}[f_n(t)]=\frac{f(t)}{nh}\int_{\mathbb{R}}k^2(u)\mathrm{d}u +o\left(\frac{1}{nh}\right)$$. The mean square error is derived, and the optimal bandwidth $$h$$ is discussed in relation to minimizing the mean square error as $$n$$ approaches infinity.

PREREQUISITES
  • Understanding of kernel density estimation
  • Familiarity with mathematical statistics concepts such as expectation and variance
  • Knowledge of Taylor series expansions
  • Basic principles of nonparametric inference
NEXT STEPS
  • Study the properties of kernel functions in kernel density estimation
  • Learn about bias-variance tradeoff in statistical estimators
  • Explore the implications of bandwidth selection on estimator performance
  • Investigate convergence rates of kernel density estimators as sample size increases
USEFUL FOR

Students and professionals in statistics, particularly those focusing on nonparametric methods, as well as researchers interested in kernel density estimation and its applications in data analysis.

schniefen
Messages
177
Reaction score
4
TL;DR
What is the expectation and variance of ##f_n(t)=\frac{1}{n}\sum_{i=1}^n \frac{1}{h}k\left(\frac{t-x_i}{h}\right)##?
This is a question from a mathematical statistics textbook, used at the first and most basic mathematical statistics course for undergraduate students. This exercise follows the chapter on nonparametric inference. An attempt at a solution is given. Any help is appreciated.

Exercise:

Suppose ##x_1, ..., x_n## are independent and identically distributed (i.i.d.) observations of a random variable ##X## with unknown distribution function ##F## and probability density function ##f\in C^m##, for some ##m>1## fixed. Let
$$f_n(t)=\frac{1}{n}\sum_{i=1}^n \frac{1}{h}k\left(\frac{t-x_i}{h}\right)$$
be a kernel estimator of ##f##, with ##k\in C^{m+1}## a given fixed function such that ##k\geq 0##, ##\int_{\mathbb{R}} k(u)\mathrm{d}u=1##, ##\mathrm{supp} (k)=[-1,1]## and bandwidth ##h=h(u)## (for the time being unspecified).
1. Show that ##\mathbb{E}[f_n(t)]=\int_{\mathbb{R}} k(u) f(t-hu)\mathrm{d}u##.
2. Make a series expansion of ##f## around ##t## in terms of ##hu## in the expression for ##\mathbb{E}[f_n(t)]##. Suppose that ##k## satisfies ##\int_{\mathbb{R}} k(u)\mathrm{d}u=1##, ##\int_{\mathbb{R}} k(u)u^l\mathrm{d}u=0## for all ##1<l<m## and ##\int_{\mathbb{R}} k(u)u^m\mathrm{d}u<\infty##. Determine the bias ##\mathbb{E}[f_n(t)]-f(t)## as a function of ##h##.
3. Suppose that ##\mathrm{Var}[k(X_1)]<\infty## and determine ##\mathrm{Var}[f_n(t)]## as a function of ##h##.
4. Determine the mean square error ##\mathrm{mse}[f_n(t)]## from 2 and 3 as a function of ##h##.
5. For what value of ##h##, as a function of ##n##, is ##\mathrm{mse}[f_n(t)]## smallest?
6. For the value of ##h=h(n)## obtained from 5, how fast does ##\mathrm{mse}[f_n(t)]## converge to 0, when ##n## converges to ##\infty##?

Attempt:

1. By linearity of the expectation, identical distribution of ##x_1, ..., x_n##, the law of the unconscious statistician and the change of variables ##u=(t−x)/h##,
\begin{align*}
\mathbb{E}[f_n(t)]&=\frac{1}{n}\sum_{i=1}^n \mathbb{E}\left[\frac{1}{h}k\left(\frac{t-x_i}{h}\right)\right]\\
&=\mathbb{E}\left[\frac{1}{h}k\left(\frac{t-x}{h}\right)\right]\\
&=\int_{\mathbb{R}}\frac{1}{h}k\left(\frac{t-x}{h}\right)f(x)\mathrm{d}x\\
&=\int_{\mathbb{R}}\frac{1}{h}k(u)f(t-hu)h\mathrm{d}u\\
&=\int_{\mathbb{R}}k(u)f(t-hu)\mathrm{d}u.
\end{align*}

2. From ##f\in C^m##, it follows that $$f(t-hu)=\sum_{l=0}^m \frac{f^{(l)}(t)}{l!} (-hu)^l+o((hu)^m).$$
Then from 1 and linearity of integration,
\begin{align*}
\mathbb{E}[f_n(t)]&=\int_{\mathbb{R}}k(u)\left(\sum_{l=0}^m \frac{f^{(l)}(t)}{l!} (-hu)^l+o((hu)^m)\right)\mathrm{d}u\\
&=\sum_{l=0}^m\int_{\mathbb{R}}k(u)\frac{f^{(l)}(t)}{l!}\mathrm{d}u+\int_{\mathbb{R}}k(u)o((hu)^m)\mathrm{d}u.
\end{align*}
From the given conditions on ##k##, the ##l=0## term reads
$$\int_{\mathbb{R}} k(u)f(t)\mathrm{d}u=f(t)\int_{\mathbb{R}} k(u) \mathrm{d}u=f(t)1=f(t).$$
The ##1\leq l<m## terms are
$$\int_{\mathbb{R}} k(u)\frac{f^{(l)}(t)}{l!} (-hu)^l\mathrm{d}u=\frac{f^{(l)}(t)(-h)^l}{l!}\int_{\mathbb{R}} k(u)u^l\mathrm{d}u=0.$$
Finally, the ##l=m## term is $$ \frac{f^{(m)}(t)(-h)^m}{m!}\int_{\mathbb{R}} k(u)u^m\mathrm{d}u<\infty.$$
The remainder term is simply,
$$\int_\mathbb{R} k(u) o((uh)^m)\mathrm{d}u = o(h^m)\int_\mathbb{R} k(u) u^m\mathrm{d}u = o(h^m).$$
Putting it all together:
$$\mathbb{E}[f_n(t)] = f(t) + \frac{f^{(m)}(t)(-h)^m}{m!} \int_{\mathbb{R}}k(u)u^m \mathrm{d}u + o(h^m),$$ and thus $$\mathbb{E}[f_n(t)]-f(t)=\frac{f^{(m)}(t)(-h)^m}{m!} \int_{\mathbb{R}}k(u)u^m \mathrm{d}u + o(h^m)=A(t)h^m+o(h^m),$$ where ##A(t)=\frac{f^{(m)}(t)(-1)^m}{m!} \int_{\mathbb{R}}k(u)u^m \mathrm{d}u<\infty.##
Note that this solution assumes that ##h\neq h(u)## and that ##\int_{\mathbb{R}} k(u)u^l\mathrm{d}u=0## for all ##1\leq l < m##. Is this reasonable?

3. This solution was partly suggested by someone else. By independence and the change of variables in 2,
\begin{align*}
\mathrm{Var}[f_n(t)]&=\mathrm{Var}\left[\frac{1}{n}\sum_{i=1}^n \frac{1}{h}k\left(\frac{t-x_i}{h}\right)\right]\\
&=\frac{1}{n^2h^2}\sum_{i=1}^n\mathrm{Var}\left[k\left(\frac{t-x_i}{h}\right)\right]\\
&=\frac{1}{nh^2}\mathrm{Var}\left[k\left(\frac{t-x}{h}\right)\right]\\
&=\frac{1}{nh^2}\left(\mathbb{E}\left[k^2\left(\frac{t-x}{h}\right)\right]-\left(\mathbb{E}\left[k\left(\frac{t-x}{h}\right)\right]\right)^2\right)\\
&=\frac{1}{nh^2}\left(h\int_{\mathbb{R}}k^2(u)f(t-hu)\mathrm{d}u-\left(h\int_{\mathbb{R}}k(u)f(t-hu)\mathrm{d}u\right)^2\right)\\
&=\frac{1}{nh^2}\left(h\int_{\mathbb{R}}k^2(u)\left(f(t)-(hu)f^{(1)}(t)+o(hu)\right)\mathrm{d}u +O(h^2) \right)\\
&=\frac{1}{nh^2}\left(h\cdot f(t)\int_{\mathbb{R}}k^2(u)\mathrm{d}u - h^2 f^{(1)}(t)\int_{\mathbb{R}}k^2(u)u\mathrm{d}u + o(h^2) +O(h^2) \right)\\
&=\frac{1}{nh^2}\left(h\cdot f(t)\int_{\mathbb{R}}k^2(u)\mathrm{d}u +O(h^2) \right)\\
&=\frac{f(t)}{nh}\int_{\mathbb{R}}k^2(u)\mathrm{d}u +o\left(\frac{1}{nh}\right),
\end{align*}
since ##o(h^2) + O(h^2) = O(h^2)## (2nd last equality) and ##O(h^2) \cdot \frac{1}{nh^2} = O(h) \cdot\frac{1}{nh} = o(1)\cdot \frac{1}{nh} = o\left(\frac{1}{nh}\right)## (last equality). What happens with ##- h^2 f^{(1)}(t)\int_{\mathbb{R}}k^2(u)u\mathrm{d}u## in the third to the second last equality?
 
Last edited:
Physics news on Phys.org
My assertion about ##h\neq h(u)## follows from...if ##h=h(u)## is in fact true, then ##o((hu)^m)=u^mo(h^m)## and thus ##
\int_\mathbb{R} k(u) o((uh)^m)\mathrm{d}u = \int_\mathbb{R} o(h^m)k(u) u^m\mathrm{d}u.## However, is it possible to just pull the ## o(h^m)## out of the integral and use the condition that ##\int_\mathbb{R} k(u) u^m\mathrm{d}u < \infty##?
 
I'm still lost on the first part. Is the ##u## in part 1 supposed to be the same ##u## that ##h## is a function of? You assumed it was constant when doing the change of variables.
 
Thanks for the reply.
Office_Shredder said:
I'm still lost on the first part. Is the ##u## in part 1 supposed to be the same ##u## that ##h## is a function of?
As I look at the exercise again, I'm unsure if it isn't supposed to be ##h=h(n)## as specified in part 6. Would this make sense?
Office_Shredder said:
You assumed it was constant when doing the change of variables.
How come? The change of variables is ##u=(t−x)/h## and it implies ##h\mathrm{d}u=\mathrm{d}x##.
 
schniefen said:
How come? The change of variables is ##u=(t−x)/h## and it implies ##h\mathrm{d}u=\mathrm{d}x##.

If h is a function of u (and hence of x also?) then this isn't true. This doesn't make a ton of sense as a set up, so I think your conjecture that the u is a typo seems right to me.
 
  • Like
Likes   Reactions: schniefen
Office_Shredder said:
If h is a function of u (and hence of x also?) then this isn't true. This doesn't make a ton of sense as a set up, so I think your conjecture that the u is a typo seems right to me.
Now, does ##o((hu)^m)=u^mo(h^m)## still hold if ##h\neq h(u)##?
 
schniefen said:
Now, does ##o((hu)^m)=u^mo(h^m)## still hold if ##h\neq h(u)##?
If one treats ##u=u(n)## (since ##u=(t-x)/h(n)##), then one could pull out factors of ##u## if the variable inside ##o## suddenly changes from ##hu## to ##n##. From the Taylor expansion, it is assumed it is ##hu##, i.e. there is a function of ##hu## that goes to ##0## faster than ##(hu)^m## as ##hu\to 0##. I guess one would have to find out what ##hu\to 0## would be equivalent to in terms of ##n##. It is isn't stated in the exercise, but to obtain reasonable estimations, ##h(n)\to 0## as ##n\to \infty##. Does this sound legitimate, @Office_Shredder? I have skimmed through different lecture notes about this and in many of them a similar calculation as above is carried out.
 
schniefen said:
Now, does ##o((hu)^m)=u^mo(h^m)## still hold if ##h\neq h(u)##?

Yes. In fact, you are going to run into more problems if h is a function of u, since now if h is small you have to consider what is happening to u. For example if ##h=1/u## the thing on the left is not a very impressive statement, and is not equal to the thing on the right.
 
Office_Shredder said:
Yes. In fact, you are going to run into more problems if h is a function of u, since now if h is small you have to consider what is happening to u. For example if ##h=1/u## the thing on the left is not a very impressive statement, and is not equal to the thing on the right.

Why is ##o((hu)^m)=o\left(\left(\frac{1}{u}u\right)^m\right)=o(1)## not equal to ##u^mo(h^m)=u^mo\left(\frac{1}{u^m}\right)=o(1)##?
 
  • #10
schniefen said:
Summary:: What is the expectation and variance of ##f_n(t)=\frac{1}{n}\sum_{i=1}^n \frac{1}{h}k\left(\frac{t-x_i}{h}\right)##?

This is a question from a mathematical statistics textbook, used at the first and most basic mathematical statistics course for undergraduate students. This exercise follows the chapter on nonparametric inference. An attempt at a solution is given. Any help is appreciated.

Exercise:

Suppose ##x_1, ..., x_n## are independent and identically distributed (i.i.d.) observations of a random variable ##X## with unknown distribution function ##F## and probability density function ##f\in C^m##, for some ##m>1## fixed. Let
$$f_n(t)=\frac{1}{n}\sum_{i=1}^n \frac{1}{h}k\left(\frac{t-x_i}{h}\right)$$
be a kernel estimator of ##f##, with ##k\in C^{m+1}## a given fixed function such that ##k\geq 0##, ##\int_{\mathbb{R}} k(u)\mathrm{d}u=1##, ##\mathrm{supp} (k)=[-1,1]## and bandwidth ##h=\displaystyle\rlap{——}h(u)h(n)## (for the time being unspecified).
1. Show that ##\mathbb{E}[f_n(t)]=\int_{\mathbb{R}} k(u) f(t-hu)\mathrm{d}u##.
2. Make a series expansion of ##f## around ##t## in terms of ##hu## in the expression for ##\mathbb{E}[f_n(t)]##. Suppose that ##k## satisfies ##\int_{\mathbb{R}} k(u)\mathrm{d}u=1##, ##\int_{\mathbb{R}} k(u)u^l\mathrm{d}u=0## for all ##1<l<m## and ##\int_{\mathbb{R}} k(u)u^m\mathrm{d}u<\infty##. Determine the bias ##\mathbb{E}[f_n(t)]-f(t)## as a function of ##h##.
3. Suppose that ##\mathrm{Var}[k(X_1)]<\infty## and determine ##\mathrm{Var}[f_n(t)]## as a function of ##h##.
4. Determine the mean square error ##\mathrm{mse}[f_n(t)]## from 2 and 3 as a function of ##h##.
5. For what value of ##h##, as a function of ##n##, is ##\mathrm{mse}[f_n(t)]## smallest?
6. For the value of ##h=h(n)## obtained from 5, how fast does ##\mathrm{mse}[f_n(t)]## converge to 0, when ##n## converges to ##\infty##?
Find attached a solution I have written.
 

Attachments

  • Like
Likes   Reactions: jim mcnamara

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
526
Replies
4
Views
3K