How to calculate the four-momentum of a photon in FRW Metric

JohnH123
Messages
3
Reaction score
0
Homework Statement
Find the 4-momentum of a photon moving in the x-direction. That is, find dt/dλ
and dx/dλ as functions of a. Note that dt/dλ at a = 1 is the present-day frequency f0.
Relevant Equations
The spatially flat Robertson-Walker Metric: ds^2 = -dt^2 + a^2(t)[dr^2+r^2(dtheta^2 + sin^2(theta)dphi^2)]
I have calculated the Christoffel symbols for the above given metric, but I don't understand how to calculate a photon's four-momentum using this information. I believe it has something to do with the null geodesic equation but I can't understand how to put that information into the problem. Thank you.
 
Physics news on Phys.org
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
 
Abhishek11235 said:
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
Just so I’m clear, ##\frac{\partial L}{\partial \dot x_i}## means the partial of the lagrangian with respect to each coordinate right? So the four momentum has components in coordinates {t, r, ##\theta##, ##\phi##}, so those components are found by finding ##\frac{\partial L}{\partial \dot t}##, ##\frac{\partial L}{\partial \dot r}## and so on, correct?
 
Abhishek11235 said:
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
Also, could you please expand on how I could calculate the four-momentum using the geodesic equation? I believe that’s the method my professor would like me to use, as stated in the problem. Thank you.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top