I How to "derive" momentum operator in position basis using STE?

LightPhoton
Messages
42
Reaction score
3
TL;DR Summary
I ask about how one can use generalized STE to motivate momentum operator in position basis using the approach of Griffiths and Schroeter
I am not able to use Latex for some reason. It is very glitchy and if I do one backspace then it fills my whole screen with multiple copies of the same equation. Thus I am pasting a screenshot of handwritten equations instead. Apologies for any inconvenience.

1714255503282.png




In Introduction to Quantum Mechanics by Griffiths and Schroeter, the IMO motivates the form of momentum operator in position basis in a very nice manner. However, the problem is that they use a very specific form of STE (1)

Instead, I want to work in a much more general setting by writing STE as (2)

Now, the authors motivate it by taking time derivative of the expectation value of the position, which leads me to (3).

However, I am not sure how to proceed from here.
 
Physics news on Phys.org
LightPhoton said:
I am not able to use Latex for some reason.
You might try logging out, clearing cookies, and then logging in again.

You might also try a different browser.
 
For the derivation by integration you would need the fact that H includes "kinetic energy" part of ##-\hbar^2/2m \ \nabla_x^2##.
 
Sorry, what does it mean STE ?
 
  • Like
Likes pines-demon
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top