I How to determine if a set is a semiring or a ring?

WMDhamnekar
MHB
Messages
376
Reaction score
28
Let E be a finite nonempty set and let ## \Omega := E^{\mathbb{N}}##be the set of all E-valued
sequences ##\omega = (\omega_n)_{n\in \mathbb{N}}F##or any ## \omega_1, \dots,\omega_n \in E ## Let

##[\omega_1, \dots,\omega_n]= \{\omega^, \in \Omega : \omega^,_i = \omega_i \forall i =1,\dots,n \}##

be the set of all sequences whose first n values are ##\omega_1,\dots, \omega_n##. Let ##\mathcal{A}_0 =\{\emptyset\}## for ##n\in \mathbb{N}## define

##\mathcal{A}_n :=\{[\omega_1,\dots,\omega_n] : \omega_1,\dots, \omega_n \in E\}##.
Hence show that ##\mathcal{A}= \bigcup_{n=0}^\infty \mathcal{A}_n## is a semiring but is not a ring if (#E >1).

My answer:

Let's consider an example where ##E = \{0,1\}## and ##\Omega = E^{\mathbb{N}}## is the set of all E-valued sequences. For any ##\omega_1,\dots,\omega_n \in E##, we have

##[\omega_1,\dots,\omega_n] = \{\omega \in \Omega : \omega_i = \omega_i \forall i = 1,\dots,n\} ##which is the set of all sequences whose first n values are ##\omega_1,\dots,\omega_n##. Let ##\mathcal{A}_0 = \{\emptyset\}## and for ##n \in \mathbb{N}## define

##\mathcal{A}_n := \{[\omega_1,\dots,\omega_n] : \omega_1,\dots,\omega_n \in E\}.##

Hence ##\mathcal{A} = \bigcup_{n=0}^\infty \mathcal{A}_n## is a semiring but not a ring if # E > 1.
To see why ##\mathcal{A}## is a semiring, let's verify that it satisfies the three conditions for a semiring. First, it contains the empty set because ##\mathcal{A}_0 = \{\emptyset\}## and ## \mathcal{A} = \bigcup_{n=0}^\infty \mathcal{A}_n##. Second, for any two sets ##A,B \in \mathcal{A}##, their difference ##B \setminus A## is a finite union of mutually disjoint sets in ##\mathcal{A}.## For example, let A = [0] and B = [1], then ## B \setminus A = [1] ##, which is ##\in \mathcal{A}.## Third, ##\mathcal{A}## is closed under intersection. For example, let ##A = [0]## and ## B = [1]##, then ## A \cap B = \emptyset ##, which is in ##\mathcal{A}##.
However, ##\mathcal{A}## is not a ring because it does not satisfy all three conditions for a ring. Specifically, it does not satisfy condition (ii) for a ring, which requires that ##\mathcal{A}## be closed under set difference. For example, let A = [0,0] and B = [0,1], then ## B \setminus A = [0,1] \setminus [0,0] = [0,1]##, which is not in ##\mathcal{A}##.
I hope this example helps to illustrate why##\mathcal{A}## is a semiring but not a ring if the cardinality of E is greater than 1. Is this answer correct?
 
Physics news on Phys.org
In order to determine if the set is a semiring you first need to specify exactly what are the addition and multiplication operations.
 
bpet said:
In order to determine if the set is a semiring you first need to specify exactly what are the addition and multiplication operations.
It refers to a semi-ring of sets, defined here, not a semi-ring in the algebraic sense.
WMDhamnekar said:
However, ##\mathcal{A}## is not a ring because it does not satisfy all three conditions for a ring. Specifically, it does not satisfy condition (ii) for a ring, which requires that ##\mathcal{A}## be closed under set difference. For example, let A = [0,0] and B = [0,1], then ## B \setminus A = [0,1] \setminus [0,0] = [0,1]##, which is not in ##\mathcal{A}##.
That is not correct. [0,1] is indeed an element of ##\mathcal A## so this example does not demonstrate non-closure. That example was never going to work because you are subtracting from a set another set that has no overlap with it, so the subtraction doesn't change the set. I don't want to give too much away so I'll keep the hint general. Why not instead try taking the union of two sets to give a set that can't be expressed as any [a, b, ..., c]? Since the whole structure is based on fixing the first n components of a sequence, try choosing two sets that are the same in their first component (##\omega_1##), but differ in their second (##\omega_2##). That should give you a set of all sequences with a fixed second component but arbitrary first component, and that might not correspond to any equivalence class in ##\mathcal A##.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top