I How to determine if a set is a semiring or a ring?

Click For Summary
The discussion focuses on determining whether a set, specifically ##\mathcal{A}##, is a semiring or a ring. It is established that ##\mathcal{A}## is a semiring because it contains the empty set, is closed under intersection, and the difference of any two sets in ##\mathcal{A}## can be expressed as a finite union of disjoint sets in ##\mathcal{A}##. However, ##\mathcal{A}## is not a ring since it fails to meet the closure under set difference condition, particularly when the cardinality of set E is greater than one. The discussion emphasizes the importance of defining addition and multiplication operations to classify the set accurately. Overall, the conclusion is that while ##\mathcal{A}## qualifies as a semiring, it does not meet the criteria to be a ring.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Let E be a finite nonempty set and let ## \Omega := E^{\mathbb{N}}##be the set of all E-valued
sequences ##\omega = (\omega_n)_{n\in \mathbb{N}}F##or any ## \omega_1, \dots,\omega_n \in E ## Let

##[\omega_1, \dots,\omega_n]= \{\omega^, \in \Omega : \omega^,_i = \omega_i \forall i =1,\dots,n \}##

be the set of all sequences whose first n values are ##\omega_1,\dots, \omega_n##. Let ##\mathcal{A}_0 =\{\emptyset\}## for ##n\in \mathbb{N}## define

##\mathcal{A}_n :=\{[\omega_1,\dots,\omega_n] : \omega_1,\dots, \omega_n \in E\}##.
Hence show that ##\mathcal{A}= \bigcup_{n=0}^\infty \mathcal{A}_n## is a semiring but is not a ring if (#E >1).

My answer:

Let's consider an example where ##E = \{0,1\}## and ##\Omega = E^{\mathbb{N}}## is the set of all E-valued sequences. For any ##\omega_1,\dots,\omega_n \in E##, we have

##[\omega_1,\dots,\omega_n] = \{\omega \in \Omega : \omega_i = \omega_i \forall i = 1,\dots,n\} ##which is the set of all sequences whose first n values are ##\omega_1,\dots,\omega_n##. Let ##\mathcal{A}_0 = \{\emptyset\}## and for ##n \in \mathbb{N}## define

##\mathcal{A}_n := \{[\omega_1,\dots,\omega_n] : \omega_1,\dots,\omega_n \in E\}.##

Hence ##\mathcal{A} = \bigcup_{n=0}^\infty \mathcal{A}_n## is a semiring but not a ring if # E > 1.
To see why ##\mathcal{A}## is a semiring, let's verify that it satisfies the three conditions for a semiring. First, it contains the empty set because ##\mathcal{A}_0 = \{\emptyset\}## and ## \mathcal{A} = \bigcup_{n=0}^\infty \mathcal{A}_n##. Second, for any two sets ##A,B \in \mathcal{A}##, their difference ##B \setminus A## is a finite union of mutually disjoint sets in ##\mathcal{A}.## For example, let A = [0] and B = [1], then ## B \setminus A = [1] ##, which is ##\in \mathcal{A}.## Third, ##\mathcal{A}## is closed under intersection. For example, let ##A = [0]## and ## B = [1]##, then ## A \cap B = \emptyset ##, which is in ##\mathcal{A}##.
However, ##\mathcal{A}## is not a ring because it does not satisfy all three conditions for a ring. Specifically, it does not satisfy condition (ii) for a ring, which requires that ##\mathcal{A}## be closed under set difference. For example, let A = [0,0] and B = [0,1], then ## B \setminus A = [0,1] \setminus [0,0] = [0,1]##, which is not in ##\mathcal{A}##.
I hope this example helps to illustrate why##\mathcal{A}## is a semiring but not a ring if the cardinality of E is greater than 1. Is this answer correct?
 
Physics news on Phys.org
In order to determine if the set is a semiring you first need to specify exactly what are the addition and multiplication operations.
 
bpet said:
In order to determine if the set is a semiring you first need to specify exactly what are the addition and multiplication operations.
It refers to a semi-ring of sets, defined here, not a semi-ring in the algebraic sense.
WMDhamnekar said:
However, ##\mathcal{A}## is not a ring because it does not satisfy all three conditions for a ring. Specifically, it does not satisfy condition (ii) for a ring, which requires that ##\mathcal{A}## be closed under set difference. For example, let A = [0,0] and B = [0,1], then ## B \setminus A = [0,1] \setminus [0,0] = [0,1]##, which is not in ##\mathcal{A}##.
That is not correct. [0,1] is indeed an element of ##\mathcal A## so this example does not demonstrate non-closure. That example was never going to work because you are subtracting from a set another set that has no overlap with it, so the subtraction doesn't change the set. I don't want to give too much away so I'll keep the hint general. Why not instead try taking the union of two sets to give a set that can't be expressed as any [a, b, ..., c]? Since the whole structure is based on fixing the first n components of a sequence, try choosing two sets that are the same in their first component (##\omega_1##), but differ in their second (##\omega_2##). That should give you a set of all sequences with a fixed second component but arbitrary first component, and that might not correspond to any equivalence class in ##\mathcal A##.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads