How to Determine the Limit of a Differential Equation Solution?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary

Discussion Overview

The discussion revolves around determining the limit of solutions to a linear differential equation of the form $y'+ay=b(x)$, where $a>0$, $b$ is continuous, and $\lim_{x \to +\infty} b(x)=l$. Participants explore methods to show that solutions approach $\frac{l}{a}$ as $x$ approaches infinity, discussing various approaches including Laplace transforms and alternative methods.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a solution form $\phi(x)=ce^{-ax}+e^{-ax} \int_0^x e^{at}b(t) dt$ and questions how to calculate the limit $\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$.
  • Another participant suggests using Laplace transforms to derive the limit, providing a series of equations leading to $\lim_{t \rightarrow \infty} y(t) = \frac{l}{a}$.
  • Some participants express uncertainty about using Laplace transforms, suggesting alternative methods to calculate the limit without that tool.
  • One participant proposes considering the continuity of $b(x)$ and the behavior of its derivatives, leading to a similar conclusion about the limit being $\frac{l}{a}$ under certain conditions.
  • Another participant introduces a counterexample where $\lim_{x \to \infty} b(x) = 0$ but $\lim_{x \to \infty} b^{\'}(x)$ does not exist, questioning the necessity of the assumption regarding the behavior of derivatives for the limit to hold.

Areas of Agreement / Disagreement

Participants express differing views on the necessity of certain conditions for the limit to hold, with some agreeing on the conclusion that $\lim_{x \to \infty} \phi(x) = \frac{l}{a}$ under specific assumptions, while others raise concerns about the validity of those assumptions and provide counterexamples. The discussion remains unresolved regarding the implications of these counterexamples.

Contextual Notes

Participants note that the assumptions about the continuity and behavior of $b(x)$ and its derivatives are crucial for the conclusions drawn. The discussion highlights the complexity of the problem and the potential for exceptions based on different forms of $b(x)$.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following exercise:

Let the (linear) differential equation $y'+ay=b(x)$ where $a>0, b$ continuous on $[0,+\infty)$ and $\lim_{x \to +\infty} b(x)=l \in \mathbb{R}$.

Show that each solution of the differential equation goes to $\frac{l}{a}$ while $x \to +\infty$,

i.e. if $\phi$ is any solution of the differential equation, show that $\lim_{x \to +\infty} \phi(x)=\frac{l}{a}$.

That's what I have tried:

The solution of the differential equation will be of the form:

$\phi(x)=ce^{-ax}+e^{-ax} \int_0^x e^{at}b(t) dt$

$\lim_{x \to +\infty} c e^{-ax}=0$

So, $\lim_{x \to +\infty} \phi(x)=\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$How can we calculate the limit $\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

I am looking at the following exercise:

Let the (linear) differential equation $y'+ay=b(x)$ where $a>0, b$ continuous on $[0,+\infty)$ and $\lim_{x \to +\infty} b(x)=l \in \mathbb{R}$.

Show that each solution of the differential equation goes to $\frac{l}{a}$ while $x \to +\infty$,

i.e. if $\phi$ is any solution of the differential equation, show that $\lim_{x \to +\infty} \phi(x)=\frac{l}{a}$.

That's what I have tried:

The solution of the differential equation will be of the form:

$\phi(x)=ce^{-ax}+e^{-ax} \int_0^x e^{at}b(t) dt$

$\lim_{x \to +\infty} c e^{-ax}=0$

So, $\lim_{x \to +\infty} \phi(x)=\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$How can we calculate the limit $\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at}b(t)dt$ ? (Thinking)

The problem is trivial using the Laplace Tranform... defining...

$\displaystyle \mathcal {L} \{ f(t) \} = F(s) = \int_{0}^{\infty} f(t)\ e^{- s t}\ d t\ (1)$

... is...

$\displaystyle \mathcal {L} \{ f^{\ '} (t)\} = s\ F(s) - f(0)\ (2)$

... and...

$\displaystyle \lim_{t \rightarrow \infty} f(t) = \lim_{ s \rightarrow 0} s\ F(s)\ (3)$

Now, writing the ODE in term of Laplace Transform You obtain...

$\displaystyle s\ Y(s) - y(0) + a\ Y(s) = B(s) \implies Y(s) = \frac{B(s) + y(0)}{s + a} \ (4)$

... so that is...

$\displaystyle \lim_{t \rightarrow \infty} y(t) = \lim_{s \rightarrow 0} \frac{s\ \{B(s) + y(0)\}}{s + a} = \frac{l}{a}\ (5)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
How else could we calculate the limit? Because we haven't seen [m] Laplace [/m] yet... (Thinking)
 
evinda said:
How else could we calculate the limit? Because we haven't seen [m] Laplace [/m] yet... (Thinking)

All right!...

a) take into account that if b(x) is continuous and $\displaystyle \lim_{x \rightarrow \infty} b(x) = l$...

b) suppose that for all its derivatives is $\displaystyle \lim_{x \rightarrow \infty} b^{(n)} (x) = 0$...

... now You consider that for the 'particular solution' is...

$\displaystyle \phi(x) = e^{- a\ x}\ \int_{0}^{x} e^{a\ t}\ b(t)\ d t = e^{- a\ x} |\frac{e ^{a\ t}}{a}\ b(t)|_{0}^{x} - \frac {e^{- a x}}{a}\ \int_{0}^{x} e^{a\ t}\ b^{\ '} (t)\ dt =$

$\displaystyle = \frac{b(x)}{a} - \frac{e ^{- a\ x}}{a}\ b(0) - \frac{b^{\ '} (x)}{a^{2}} + \frac{e^{- a\ x}}{a^{2}}\ b^{\ '}(0) + ...\ (1)$

... and if b(x) is 'regular enough' around x=0 the result is...

$\displaystyle \lim_{x \rightarrow \infty} \phi(x) = \frac{l}{a}\ (2)$

If b) isn't true however, honestly I don't have at the moment any idea on how to proceed...

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
All right!...

a) take into account that if b(x) is continuous and $\displaystyle \lim_{x \rightarrow \infty} b(x) = l$...

b) suppose that for all its derivatives is $\displaystyle \lim_{x \rightarrow \infty} b^{(n)} (x) = 0$...

... now You consider that for the 'particular solution' is...

$\displaystyle \phi(x) = e^{- a\ x}\ \int_{0}^{x} e^{a\ t}\ b(t)\ d t = e^{- a\ x} |\frac{e ^{a\ t}}{a}\ b(t)|_{0}^{x} - \frac {e^{- a x}}{a}\ \int_{0}^{x} e^{a\ t}\ b^{\ '} (t)\ dt =$

$\displaystyle = \frac{b(x)}{a} - \frac{e ^{- a\ x}}{a}\ b(0) - \frac{b^{\ '} (x)}{a^{2}} + \frac{e^{- a\ x}}{a^{2}}\ b^{\ '}(0) + ...\ (1)$

... and if b(x) is 'regular enough' around x=0 the result is...

$\displaystyle \lim_{x \rightarrow \infty} \phi(x) = \frac{l}{a}\ (2)$

If b) isn't true however, honestly I don't have at the moment any idea on how to proceed...

It's my opinion that, when in doubt, the safest thing is to look for a few 'counterexample '... and what I found was this ...

$\displaystyle y^{\ '} + y = \frac{\sin x^{2}}{1 + x},\ y(0) = 0\ (1)$

... which, being $a=1$ and $\displaystyle b(x) = \frac{\sin x^{2}}{1 + x}$, is a particular case of the general equation proposed by evinda...

... here is $\displaystyle \lim_{x \rightarrow \infty} b(x) = 0$ but $\displaystyle \lim_{x \rightarrow \infty} b^{\ '} (x)$ doesn't exist...

The numeric solution of (1) given by 'Monster Wolfram' is here...

y''' '+' y '=' sin '('x'^'2')''/''('1'+' x')', y'('0')''='0 - Wolfram|Alpha

... and it seeems that $\displaystyle \lim_{x \rightarrow \infty} y(x)$ doesn't exist...

... the conclusion could be that the assumption that for all n> 0 is $\displaystyle \lim_{x \rightarrow \infty} b^{(n)} (x) = 0$ is required ...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K