How to Evaluate Trigonometric Cosine Sums Manually?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The discussion focuses on evaluating the trigonometric sum $\cos 5^{\circ}+\cos 77^{\circ}+\cos 149^{\circ}+\cos 221^{\circ}+\cos 293^{\circ}$ manually. Participants highlight the use of cosine properties and symmetries to simplify the calculation. The correct solution was provided by user kaliprasad, demonstrating effective techniques for handling cosine sums without a calculator.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with cosine function properties
  • Knowledge of angle addition and subtraction formulas
  • Basic skills in manual calculation of trigonometric values
NEXT STEPS
  • Study the derivation of cosine addition formulas
  • Explore the concept of symmetry in trigonometric functions
  • Learn techniques for evaluating trigonometric sums
  • Practice manual calculations of various trigonometric identities
USEFUL FOR

Students of mathematics, educators teaching trigonometry, and anyone interested in manual evaluation of trigonometric expressions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\cos 5^{\circ}+\cos 77^{\circ}+\cos 149^{\circ}+\cos 221^{\circ}+\cos 293^{\circ}$ without the help of calculator.

_______________________________________________________________________________________________________
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to kaliprasad for his correct solutions::)

Using $\cos\,A + \cos\,B= 2\cos\dfrac{A+B}{2} \cos\dfrac{A-B}{2}\dots(1)$, we have

$\cos\,293^\circ + \cos\,77^\circ = 2 \cos\,185^\circ \cos\,108^\circ = 2 (- \cos\,5^\circ)(-\cos \,72^\circ)$

or $\cos\,293^\circ + \cos\,77^\circ = 2 \cos\,5^\circ \cos \,72^\circ\dots(2) $

further from (1)

$\cos\,221^\circ + \cos\,149^\circ = 2 \cos\,185^\circ \cos\,36^\circ = 2 (- \cos\,5^\circ)(\cos \,36^\circ)$

or $\cos\,221^\circ + \cos\,149^\circ = - 2 \cos\,5^\circ\cos \,36^\circ \dots(3)$

from (2) and (3) and adding $\cos\,5^\circ$

we get
$ \cos\,5^\circ + \cos\,77^\circ+ \cos\,149^\circ+ \cos\,221^\circ+ \cos\,293^\circ$
= $ \cos\,5^\circ + 2 \cos\,5^\circ \cos\,72^\circ -2 \cos\,5^\circ \cos\,36^\circ$
= $ \cos\,5^\circ ( 1 + 2 (\cos\,72^\circ - \cos\,36^\circ))$
= $ \cos\,5^\circ ( 1 - 2 * 2 (\sin \,54^\circ \sin \,18^\circ))$ using $\cos\,A - \cos\,B= 2\sin \dfrac{A+B}{2} \sin \dfrac{A-B}{2}$
= $\cos \,5^\circ( 1 - 4\dfrac{ \sin\, 2* 54^\circ}{2 * \cos\,54^\circ}\dfrac{ \sin\, 2* 18^\circ}{2 * \cos\,18^\circ})$
= $\cos \,5^\circ( 1 - \dfrac{ \sin\, 108 ^\circ}{\cos\,54^\circ}\dfrac{ \sin\, 36^\circ}{\cos\,18^\circ})$
= $\cos \,5^\circ( 1 - \dfrac{ \sin\, 72 ^\circ}{\sin\,36^\circ}\dfrac{ \sin\, 36^\circ}{\sin \,72^\circ})$
= $\cos \,5^\circ( 1 - 1)$
= 0
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K