MHB How to Evaluate Trigonometric Cosine Sums Manually?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
To evaluate the sum $\cos 5^{\circ}+\cos 77^{\circ}+\cos 149^{\circ}+\cos 221^{\circ}+\cos 293^{\circ}$ manually, one can use the properties of cosine and symmetry in the unit circle. The angles can be grouped into pairs that are symmetric about the x-axis, leading to simplifications. Utilizing the cosine addition formulas and identities can further streamline the evaluation process. The final result of the sum is zero, demonstrating the periodic nature of the cosine function. This approach highlights the importance of understanding trigonometric identities in manual calculations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\cos 5^{\circ}+\cos 77^{\circ}+\cos 149^{\circ}+\cos 221^{\circ}+\cos 293^{\circ}$ without the help of calculator.

_______________________________________________________________________________________________________
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to kaliprasad for his correct solutions::)

Using $\cos\,A + \cos\,B= 2\cos\dfrac{A+B}{2} \cos\dfrac{A-B}{2}\dots(1)$, we have

$\cos\,293^\circ + \cos\,77^\circ = 2 \cos\,185^\circ \cos\,108^\circ = 2 (- \cos\,5^\circ)(-\cos \,72^\circ)$

or $\cos\,293^\circ + \cos\,77^\circ = 2 \cos\,5^\circ \cos \,72^\circ\dots(2) $

further from (1)

$\cos\,221^\circ + \cos\,149^\circ = 2 \cos\,185^\circ \cos\,36^\circ = 2 (- \cos\,5^\circ)(\cos \,36^\circ)$

or $\cos\,221^\circ + \cos\,149^\circ = - 2 \cos\,5^\circ\cos \,36^\circ \dots(3)$

from (2) and (3) and adding $\cos\,5^\circ$

we get
$ \cos\,5^\circ + \cos\,77^\circ+ \cos\,149^\circ+ \cos\,221^\circ+ \cos\,293^\circ$
= $ \cos\,5^\circ + 2 \cos\,5^\circ \cos\,72^\circ -2 \cos\,5^\circ \cos\,36^\circ$
= $ \cos\,5^\circ ( 1 + 2 (\cos\,72^\circ - \cos\,36^\circ))$
= $ \cos\,5^\circ ( 1 - 2 * 2 (\sin \,54^\circ \sin \,18^\circ))$ using $\cos\,A - \cos\,B= 2\sin \dfrac{A+B}{2} \sin \dfrac{A-B}{2}$
= $\cos \,5^\circ( 1 - 4\dfrac{ \sin\, 2* 54^\circ}{2 * \cos\,54^\circ}\dfrac{ \sin\, 2* 18^\circ}{2 * \cos\,18^\circ})$
= $\cos \,5^\circ( 1 - \dfrac{ \sin\, 108 ^\circ}{\cos\,54^\circ}\dfrac{ \sin\, 36^\circ}{\cos\,18^\circ})$
= $\cos \,5^\circ( 1 - \dfrac{ \sin\, 72 ^\circ}{\sin\,36^\circ}\dfrac{ \sin\, 36^\circ}{\sin \,72^\circ})$
= $\cos \,5^\circ( 1 - 1)$
= 0
 
Back
Top