let's make them to case 1 and case 2
Case 1:
$$|1-4x|=-(1-4x) \,\,\, \,\,\,\forall \,\,\, x>\frac{1}{4}$$ $$\left(\frac{1}{4},2 \right)$$
Our function become $$\frac{x^3}{2}-1+4x$$
If we derivate the function we get $$\frac{3x^2}{2}+4$$
Now we want to find critical point $$\frac{3x^2}{2}+4=0$$
So I factor out $$\frac{1}{2}$$ and get $$\frac{1}{2}(3x^2+8)=0$$ and our critical point (complex) are $$x_1=\sqrt{\frac{-8}{3}}$$ and $$x_2=-\sqrt{\frac{-8}{3}}$$ I guess we shall ignore case 1 cause we got complex roots.
Case 2:
$$|1-4x|=-(-1+4) \,\,\, \,\,\,\forall \,\,\ x<\frac{1}{4} $$ $$\left(0,\frac{1}{4} \right)$$
Our function become $$\frac{x^3}{2}+1-4x$$
If we derivate the function we get $$\frac{3x^2}{2}-4$$
Now we want to find critical point $$\frac{3x^2}{2}-4=0$$
So I factor out $$\frac{1}{2}$$ and get $$\frac{1}{2}(3x^2-8)=0$$ and our critical point are: $$x_1:\sqrt{\frac{8}{3}}$$ and $$x_2:-\sqrt{\frac{8}{3}}$$ but our $$x_2$$ does not fit our domain so we shall ignore it. I am correct so far? What shall I do next?