MHB How to find the eigenvectors for a given matrix using the example in a textbook?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    System
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Solve the system
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similiar)

https://www.physicsforums.com/attachments/8922
 
Physics news on Phys.org
karush said:
Solve the system
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similiar)
Okay, so now find your eigenvectors:
[math]\left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right ) \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) = 2 \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )[/math]

etc. (Remember that you have that double eigenvalue, too!)

-Dan
 
topsquark said:
Okay, so now find your eigenvectors:
[math]\left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right ) \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) = 2 \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )[/math]

etc. (Remember that you have that double eigenvalue, too!)

-Dan

So would $\lambda=4$ just be:
$$\displaystyle \left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right )
\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) =4\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )$$
 
karush said:
So would $\lambda=4$ just be:
$$\displaystyle \left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right )
\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) =4\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )$$
Correct. So one choice of the eigenvector corresponding to the eigenvalue 4 is [math]\left ( \begin{matrix} 1 \\ 2 \\ 4 \end{matrix} \right )[/math].

Can you get the other two?

-Dan

Addendum: Normally (pun intended) for Physics I would normalize this to [math]\dfrac{1}{\sqrt{21}} \left ( \begin{matrix} 1 \\ 2 \\ 4 \end{matrix} \right )[/math], but I don't know what conventions a Mathematician would ordinarily use.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K
Replies
33
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K