MHB How to find the eigenvectors for a given matrix using the example in a textbook?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    System
Click For Summary
To find the eigenvectors for the matrix given in the system Y' = A Y, the characteristic polynomial is derived by subtracting λ from the diagonal entries and calculating the determinant, resulting in the eigenvalues λ1 = 2 (double root) and λ2 = 4. The eigenvectors are found by solving the equation A v = λ v for each eigenvalue. For λ = 4, one eigenvector is identified as (1, 2, 4). The discussion highlights the importance of normalizing eigenvectors, particularly in physics contexts, though conventions may vary in mathematics.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Solve the system
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similiar)

https://www.physicsforums.com/attachments/8922
 
Physics news on Phys.org
karush said:
Solve the system
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similiar)
Okay, so now find your eigenvectors:
[math]\left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right ) \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) = 2 \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )[/math]

etc. (Remember that you have that double eigenvalue, too!)

-Dan
 
topsquark said:
Okay, so now find your eigenvectors:
[math]\left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right ) \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) = 2 \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )[/math]

etc. (Remember that you have that double eigenvalue, too!)

-Dan

So would $\lambda=4$ just be:
$$\displaystyle \left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right )
\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) =4\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )$$
 
karush said:
So would $\lambda=4$ just be:
$$\displaystyle \left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right )
\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) =4\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )$$
Correct. So one choice of the eigenvector corresponding to the eigenvalue 4 is [math]\left ( \begin{matrix} 1 \\ 2 \\ 4 \end{matrix} \right )[/math].

Can you get the other two?

-Dan

Addendum: Normally (pun intended) for Physics I would normalize this to [math]\dfrac{1}{\sqrt{21}} \left ( \begin{matrix} 1 \\ 2 \\ 4 \end{matrix} \right )[/math], but I don't know what conventions a Mathematician would ordinarily use.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K