How to find the eigenvectors for a given matrix using the example in a textbook?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    System
Click For Summary
SUMMARY

This discussion focuses on finding eigenvectors for the matrix $$\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$ using the eigenvalues $$\lambda_1=2, \lambda_2=2, \lambda_3=4$$ derived from the characteristic polynomial $$(-\lambda+2)^{2}(-\lambda+4)$$. Participants clarify the process of substituting eigenvalues back into the matrix equation to find corresponding eigenvectors. A specific eigenvector for $$\lambda=4$$ is identified as $$\left ( \begin{matrix} 1 \\ 2 \\ 4 \end{matrix} \right )$$, with a suggestion to normalize it for physics applications.

PREREQUISITES
  • Understanding of eigenvalues and eigenvectors
  • Familiarity with matrix operations and determinants
  • Knowledge of linear algebra concepts
  • Ability to solve systems of linear equations
NEXT STEPS
  • Learn how to compute eigenvalues and eigenvectors for different matrix types
  • Study the normalization of eigenvectors in various contexts
  • Explore the implications of double eigenvalues in linear algebra
  • Investigate applications of eigenvalues and eigenvectors in physics and engineering
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with linear transformations and need to understand the computation of eigenvalues and eigenvectors.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Solve the system
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similar)

https://www.physicsforums.com/attachments/8922
 
Physics news on Phys.org
karush said:
Solve the system
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similar)
Okay, so now find your eigenvectors:
[math]\left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right ) \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) = 2 \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )[/math]

etc. (Remember that you have that double eigenvalue, too!)

-Dan
 
topsquark said:
Okay, so now find your eigenvectors:
[math]\left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right ) \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) = 2 \left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )[/math]

etc. (Remember that you have that double eigenvalue, too!)

-Dan

So would $\lambda=4$ just be:
$$\displaystyle \left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right )
\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) =4\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )$$
 
karush said:
So would $\lambda=4$ just be:
$$\displaystyle \left ( \begin{matrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{matrix} \right )
\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right ) =4\left ( \begin{matrix} a \\ b \\ c \end{matrix} \right )$$
Correct. So one choice of the eigenvector corresponding to the eigenvalue 4 is [math]\left ( \begin{matrix} 1 \\ 2 \\ 4 \end{matrix} \right )[/math].

Can you get the other two?

-Dan

Addendum: Normally (pun intended) for Physics I would normalize this to [math]\dfrac{1}{\sqrt{21}} \left ( \begin{matrix} 1 \\ 2 \\ 4 \end{matrix} \right )[/math], but I don't know what conventions a Mathematician would ordinarily use.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K