How to find the remainders when ## 2^{50} ## and ## 41^{65} ## are?

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The remainders of ## 2^{50} ## and ## 41^{65} ## when divided by ## 7 ## are definitively calculated as follows: ## 2^{50} \equiv 4 \pmod 7 ## and ## 41^{65} \equiv 6 \pmod 7 ##. The calculation for ## 2^{50} ## utilizes the property that ## 2^{3} \equiv 1 \pmod 7 ##, leading to ## 2^{50} = (2^{3})^{16} \cdot 2^{2} \equiv 4 \pmod 7 ##. For ## 41^{65} ##, it is simplified using the equivalence ## 41 \equiv 6 \pmod 7 ##, resulting in ## 41^{65} \equiv (-1)^{65} \equiv 6 \pmod 7 ##.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with exponentiation properties
  • Knowledge of congruences
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study modular exponentiation techniques
  • Explore the Chinese Remainder Theorem
  • Learn about Fermat's Little Theorem
  • Investigate applications of modular arithmetic in cryptography
USEFUL FOR

Mathematicians, computer scientists, students studying number theory, and anyone interested in modular arithmetic applications.

Math100
Messages
817
Reaction score
230
Homework Statement
Find the remainders when ## 2^{50} ## and ## 41^{65} ## are divided by ## 7 ##.
Relevant Equations
None.
Consider ## 2^{3}=8\equiv 1 \pmod 7 ##.
Then ## 2^{50}=2^{48}\cdot 2^{2}=(2^{3})^{16}\cdot 2^{2}\equiv 1^{16}\cdot 2^{2} \pmod 7\equiv 2^{2} \pmod 7\equiv 4 \pmod 7 ##.
Thus ## 2^{50}\equiv 4 \pmod 7 ##.
Now observe that ## 41\equiv 6 \pmod 7\equiv (-1) \pmod 7 ##.
Then ## 41^{65}\equiv (-1)^{65} \pmod 7\equiv (-1) \pmod 7\equiv 6 \pmod 7 ##.
Thus ## 41^{65}\equiv 6 \pmod 7 ##.
Therefore, the remainders when ## 2^{50} ## and ## 41^{65} ## are divided by ## 7 ## are ## 4 ## and ## 6 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the remainders when ## 2^{50} ## and ## 41^{65} ## are divided by ## 7 ##.
Relevant Equations:: None.

Consider ## 2^{3}=8\equiv 1 \pmod 7 ##.
Then ## 2^{50}=2^{48}\cdot 2^{2}=(2^{3})^{16}\cdot 2^{2}\equiv 1^{16}\cdot 2^{2} \pmod 7\equiv 2^{2} \pmod 7\equiv 4 \pmod 7 ##.
Thus ## 2^{50}\equiv 4 \pmod 7 ##.
Now observe that ## 41\equiv 6 \pmod 7\equiv (-1) \pmod 7 ##.
Then ## 41^{65}\equiv (-1)^{65} \pmod 7\equiv (-1) \pmod 7\equiv 6 \pmod 7 ##.
Thus ## 41^{65}\equiv 6 \pmod 7 ##.
Therefore, the remainders when ## 2^{50} ## and ## 41^{65} ## are divided by ## 7 ## are ## 4 ## and ## 6 ##.
Perfect.
 
  • Like
Likes   Reactions: Math100

Similar threads

Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K