MHB How to Form a Quadratic Equation with Coefficients in AP and Integer Roots?

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
form a quadratic equation $ax^2 + bx + c = 0$ such that a,b,c are in AP and it has got integer roots
 
Mathematics news on Phys.org
[sp]
Set $a = 1$ for convenience. Then the quadratic has integer roots if and only if $b^2 - 4c$ is a perfect square. Furthermore we need $a$, $b$ and $c$ to be in arithmetic progression, so we must have $b = 1 + k$ and $c = 1 + 2k$ for some nonzero integer $k$. Thus we need $(1 + k)^2 - 4(1 + 2k) = k^2 - 6k - 3$ to be a perfect square. The first one that works is $k = 7$, since $7^2 - 6 \times 7 - 3 = 4 = 2^2$. Therefore a solution is:
$$x^2 + 8x + 15 = 0$$
Which has integer roots $-5$ and $-3$, and $1$, $8$, $15$ are in arithmetic progression.

TODO: find a systematic way to choose $k$, and prove/disprove there are infinitely many solutions for any $a \ne 0$.​
[/sp]
 
Bacterius said:
[sp]
Set $a = 1$ for convenience. Then the quadratic has integer roots if and only if $b^2 - 4c$ is a perfect square. Furthermore we need $a$, $b$ and $c$ to be in arithmetic progression, so we must have $b = 1 + k$ and $c = 1 + 2k$ for some nonzero integer $k$. Thus we need $(1 + k)^2 - 4(1 + 2k) = k^2 - 6k - 3$ to be a perfect square. The first one that works is $k = 7$, since $7^2 - 6 \times 7 - 3 = 4 = 2^2$. Therefore a solution is:
$$x^2 + 8x + 15 = 0$$
Which has integer roots $-5$ and $-3$, and $1$, $8$, $15$ are in arithmetic progression.

TODO: find a systematic way to choose $k$, and prove/disprove there are infinitely many solutions for any $a \ne 0$.​
[/sp]
[sp]In fact, assuming that $a$, $b$ and $c$ are integers there is only one other solution apart from $x^2 + 8x + 15 = 0$ or multiples of it.

If $a$ and $k$ have a common factor $d$ then $d$ will divide $a$, $b$ and $c$, and we can divide the equation $ax^2 + bx + c = 0$ by $d$ to get an equivalent version of the same equation. So we may assume that $a$ and $k$ are coprime. But the sum of the roots (which has to be an integer) is $\frac{-(a+k)}{a} = -1 -\frac ka$. If $a$ and $k$ are coprime that can only be an integer when $a=1$. So the equation becomes $x^2 + (1+k)x + (1+2k)$, with roots $\frac12\bigl( -1-k \pm\sqrt{(k+1)^2 - 4(2k+1)}\bigr).$

The expression under the square root is $k^2 - 6k - 3 = (k-3)^2 - 12$. That has to be the square of some integer $n$. If we write $k-3=m$ then $m$ and $n$ have to satisfy the condition $m^2 - 12 = n^2$. Then $m^2 - n^2 = (m+n)(m-n) = 12.$ The only factorisations of $12$ making $m$ and $n$ both integers are are $12 = (\pm6)(\pm2)$, giving $m = \pm4$ and $n = \pm2.$ If $m=4$ then $k=7$, giving the solution ground by Bacterius. If $m=-4$ then $k=-1$, giving the equation $x^2 + 0x + (-1) = 0$, or $x^2-1=0$, with solutions $x = \pm1.$[/sp]
 
my solution is same as above except the starting point

because the roots are integer say m and n then
$f(x) =l(x+m)(x+n)$

so for the case when gcd( coefficients of $x^2$, coefficients of x, constant) = 1 then coefficient of $x^2 = 1$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top