How to Form a Quadratic Equation with Coefficients in AP and Integer Roots?

Click For Summary
SUMMARY

The discussion focuses on forming a quadratic equation of the form \( ax^2 + bx + c = 0 \) where the coefficients \( a, b, c \) are in arithmetic progression (AP) and yield integer roots. By setting \( a = 1 \), it is established that \( b = 1 + k \) and \( c = 1 + 2k \) for a nonzero integer \( k \). The condition for integer roots is that \( b^2 - 4c \) must be a perfect square, leading to the equation \( k^2 - 6k - 3 \). The first valid solution occurs at \( k = 7 \), resulting in the quadratic \( x^2 + 8x + 15 = 0 \) with integer roots \( -5 \) and \( -3 \).

PREREQUISITES
  • Understanding of quadratic equations and their roots
  • Familiarity with arithmetic progression (AP)
  • Knowledge of perfect squares and their properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore the systematic selection of integer values for \( k \) in quadratic equations
  • Research the properties of integer roots in quadratic equations
  • Investigate the implications of coprimality between coefficients \( a \) and \( k \)
  • Study the factorization of expressions like \( m^2 - n^2 = 12 \) for integer solutions
USEFUL FOR

Mathematicians, educators, and students interested in quadratic equations, number theory, and algebraic structures involving integer solutions and arithmetic progressions.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
form a quadratic equation $ax^2 + bx + c = 0$ such that a,b,c are in AP and it has got integer roots
 
Mathematics news on Phys.org
[sp]
Set $a = 1$ for convenience. Then the quadratic has integer roots if and only if $b^2 - 4c$ is a perfect square. Furthermore we need $a$, $b$ and $c$ to be in arithmetic progression, so we must have $b = 1 + k$ and $c = 1 + 2k$ for some nonzero integer $k$. Thus we need $(1 + k)^2 - 4(1 + 2k) = k^2 - 6k - 3$ to be a perfect square. The first one that works is $k = 7$, since $7^2 - 6 \times 7 - 3 = 4 = 2^2$. Therefore a solution is:
$$x^2 + 8x + 15 = 0$$
Which has integer roots $-5$ and $-3$, and $1$, $8$, $15$ are in arithmetic progression.

TODO: find a systematic way to choose $k$, and prove/disprove there are infinitely many solutions for any $a \ne 0$.​
[/sp]
 
Bacterius said:
[sp]
Set $a = 1$ for convenience. Then the quadratic has integer roots if and only if $b^2 - 4c$ is a perfect square. Furthermore we need $a$, $b$ and $c$ to be in arithmetic progression, so we must have $b = 1 + k$ and $c = 1 + 2k$ for some nonzero integer $k$. Thus we need $(1 + k)^2 - 4(1 + 2k) = k^2 - 6k - 3$ to be a perfect square. The first one that works is $k = 7$, since $7^2 - 6 \times 7 - 3 = 4 = 2^2$. Therefore a solution is:
$$x^2 + 8x + 15 = 0$$
Which has integer roots $-5$ and $-3$, and $1$, $8$, $15$ are in arithmetic progression.

TODO: find a systematic way to choose $k$, and prove/disprove there are infinitely many solutions for any $a \ne 0$.​
[/sp]
[sp]In fact, assuming that $a$, $b$ and $c$ are integers there is only one other solution apart from $x^2 + 8x + 15 = 0$ or multiples of it.

If $a$ and $k$ have a common factor $d$ then $d$ will divide $a$, $b$ and $c$, and we can divide the equation $ax^2 + bx + c = 0$ by $d$ to get an equivalent version of the same equation. So we may assume that $a$ and $k$ are coprime. But the sum of the roots (which has to be an integer) is $\frac{-(a+k)}{a} = -1 -\frac ka$. If $a$ and $k$ are coprime that can only be an integer when $a=1$. So the equation becomes $x^2 + (1+k)x + (1+2k)$, with roots $\frac12\bigl( -1-k \pm\sqrt{(k+1)^2 - 4(2k+1)}\bigr).$

The expression under the square root is $k^2 - 6k - 3 = (k-3)^2 - 12$. That has to be the square of some integer $n$. If we write $k-3=m$ then $m$ and $n$ have to satisfy the condition $m^2 - 12 = n^2$. Then $m^2 - n^2 = (m+n)(m-n) = 12.$ The only factorisations of $12$ making $m$ and $n$ both integers are are $12 = (\pm6)(\pm2)$, giving $m = \pm4$ and $n = \pm2.$ If $m=4$ then $k=7$, giving the solution ground by Bacterius. If $m=-4$ then $k=-1$, giving the equation $x^2 + 0x + (-1) = 0$, or $x^2-1=0$, with solutions $x = \pm1.$[/sp]
 
my solution is same as above except the starting point

because the roots are integer say m and n then
$f(x) =l(x+m)(x+n)$

so for the case when gcd( coefficients of $x^2$, coefficients of x, constant) = 1 then coefficient of $x^2 = 1$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K