How to fully solve this limit evaluation using integration?

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The limit evaluation of $$\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}$$ converges to $$\frac{1}{2}$$. The function defined as $$f(x) = \begin{cases}x^{x+1}&(x>0),\\0&(x=0)\end{cases}$$ is continuously differentiable, and its behavior near zero is crucial for the evaluation. By applying inequalities and summing over k, the limit can be rigorously established using the properties of sums and the relationship between the function and its derivative. Alternative approaches, such as Riemann sums, can also be utilized for this evaluation.

PREREQUISITES
  • Understanding of limits and summation notation
  • Familiarity with continuous functions and differentiability
  • Knowledge of Riemann sums and their applications
  • Basic calculus concepts, including logarithmic differentiation
NEXT STEPS
  • Study the properties of continuous functions and their derivatives
  • Learn about Riemann sums and their role in integral calculus
  • Explore advanced limit evaluation techniques in calculus
  • Investigate the applications of inequalities in mathematical proofs
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced calculus and limit evaluation techniques.

juantheron
Messages
243
Reaction score
1
Evaluation of $$\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}$$
 
Physics news on Phys.org
jacks said:
Evaluation of $$\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}$$

We can set the followings:
$$
dx=\frac{1}{n}$$
and
$$
x=\frac{k}{n}
$$
As $$n\rightarrow \infty$$ $$\sum$$ is replaced with $$\int$$.
So, we finally have:

$$
\int_{0}^{1} (x dx)^{1 +x dx}
=> \int_{0}^{1} x dx ((x dx)^{x})^{dx}
$$

Term inside () in above integration will be one because in limiting case $$dx \rightarrow 0.$$ To be honest I might be taking a leap here. :)
So, the problem actually reduces to:

$$
\int_{0}^{1} x dx
$$

Whose value is 0.5.
 
Last edited by a moderator:
Satya said:
jacks said:
Evaluation of $$\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}$$
We can set the followings:
$$
dx=\frac{1}{n}$$
and
$$
x=\frac{k}{n}
$$
As $$n\rightarrow \infty$$ $$\sum$$ is replaced with $$\int$$.
So, we finally have:

$$
\int_{0}^{1} (x dx)^{1 +x dx}
=> \int_{0}^{1} x dx ((x dx)^{x})^{dx}
$$

Term inside () in above integration will be one because in limiting case $$dx \rightarrow 0.$$ To be honest I might be taking a leap here. :)
So, the problem actually reduces to:

$$
\int_{0}^{1} x dx
$$

Whose value is 0.5.
Brilliant intuition, Satya! But this is a math forum, not an engineering forum, so your argument needs a few sticking plasters to make it rigorous.

[sp]Define a function $f(x)$ for $x\geqslant0$ by $$f(x) = \begin{cases}x^{x+1}&(x>0),\\0&(x=0). \end{cases}$$ Then $f$ is continuously differentiable, with $$f'(x) = \begin{cases}x^x(x + \ln x + 1)&(x>0),\\ 1&(x=0).\end{cases}$$ Strictly speaking, the derivative at $x=0$ is only a one-sided derivative. But that is the crucial fact that is needed, because it implies that $f(x)$ is very close to $x$ when $x$ is small. More precisely, given $\varepsilon>0$ there exists $\delta>0$ such that $(1-\varepsilon)x < f(x) < (1+\varepsilon)x$ whenever $0<x<\delta$.

Now choose $n$ with $\frac1n<\delta$, and let $1\leqslant k\leqslant n$. We can then put $x = \frac k{n^2}$ in the above inequalities to get $$(1-\varepsilon)\frac k{n^2} < \bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1} < (1+\varepsilon)\frac k{n^2}.$$ Sum that from $k=1$ to $n$, using the fact that $$\sum_{k=1}^n k = \tfrac12n(n+1)$$, getting $$(1-\varepsilon)\frac{n(n+1)}{2n^2} < \sum_{k=1}^n \bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1} < (1 + \varepsilon)\frac{n(n+1)}{2n^2}.$$ Let $n\to\infty$ to get $$\frac12(1-\varepsilon) \leqslant \lim_{n\to\infty} \sum_{k=1}^n \bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1} \leqslant \frac12(1+\varepsilon).$$ Finally, let $\varepsilon\to0$ to see that $$\lim_{n\to\infty} \sum_{k=1}^n \bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1} = \frac12$$.

(The last part of that argument could alternatively be done by using a Riemann sum approximation to an integral, which is what Satya was doing.)

[/sp]
 
Last edited:
  • Like
Likes   Reactions: juantheron
Wow. I had struggled to formalize my solution. You solved this problem in the way it should be solved. Great.
 
Thank you Opalg. I was struggling to find a rigorous proof as well.
Using your solution, I could finish mine.
Just as a slight alternative, here is my solution.

Let's take as a given that:
$$\lim_{x\to 0^+} x^x = 1 \tag{1}$$
We can prove it separately (indirectly) with l'Hôpital's rule, but I'll keep that out of scope for now.

It means that for every $\varepsilon >0$ there is an $\delta >0$ such that for every $0<x<\delta$ we have: $1-\varepsilon < x^x < 1 + \varepsilon$.
Moreover, for $N$ sufficiently big we have that $0 < \frac 1N < \delta$.
That is, there is an $N$ such that for all $n> N$ and for all $1\le k \le n$ we have that $0<\frac k{n^2} \le \frac n{n^2} < \frac 1N < \delta$.
And therefore:
$$1-\varepsilon < \left(\frac k{n^2}\right)^{\frac k{n^2}} < 1 + \varepsilon \tag{2}$$

Let $s_n$ be the summation in the problem statement up to $n$. Then:
\begin{aligned}
s_n = \sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}
&= \left(\frac 1{n^2}\right)^{\frac 1{n^2}+1} + \left(\frac 2{n^2}\right)^{\frac 2{n^2}+1} + \ldots + \left(\frac n{n^2}\right)^{\frac n{n^2}+1} \\
&= \frac 1{n^2}\left[ \left(\frac 1{n^2}\right)^{\frac 1{n^2}} + \left(\frac 2{n^2}\right)^{\frac 2{n^2}}\cdot 2 + \ldots + \left(\frac n{n^2}\right)^{\frac n{n^2}} \cdot n \right]
\end{aligned}
Using (2), we get the following.
For every $\varepsilon >0$ there is an $N$ such that for all $n> N$:
\begin{aligned}\frac 1{n^2}\big[ (1-\varepsilon) + (1-\varepsilon)2 + \ldots + (1-\varepsilon)n \big]
&< s_n < \frac 1{n^2}\big[ (1+\varepsilon) + (1+\varepsilon)2 + \ldots + (1+\varepsilon)n \big] \\
\frac {1-\varepsilon}{n^2}\cdot \frac 12n(n+1) &< s_n < \frac {1+\varepsilon}{n^2}\cdot \frac 12n(n+1) \\
\frac 12 (1-\varepsilon) &< s_n < \frac 12(1+\varepsilon)(1+\frac 1n)
\end{aligned}
Now let $\varepsilon \to 0^+$ and $n\to\infty$ and we get:
$$\lim_{n\to\infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1} = \lim_{n\to\infty} s_n = \frac 12$$
 
  • Like
Likes   Reactions: juantheron
One more variation. This time with an integral as Satya suggested and with sticking plasters from Opalg.

Let $s_n = \sum^{n}_{k=1}\left(\frac{k}{n^2}\right)^{\frac{k}{n^2}+1}$.
Let $x_k = \frac kn$ and $\Delta x = \frac 1n$.

Then it follows from the definition of a Riemann integral that:
$$\lim_{n\to\infty}\sum_{k=1}^n x_k\Delta x = \int_0^1 x\,dx \tag 1$$

Using $\lim\limits_{x\to 0^+} x^x = 1$ we can find the following, as explained in my previous solution.

For every $\varepsilon > 0$ there is an $N$ such that for all $n>N$ and all $1\le k \le n$:
$$1-\varepsilon < (x_k \Delta x)^{x_k \Delta x} < 1+\varepsilon \tag 2$$

We have:
$$
s_n =\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}
= \sum^{n}_{k=1}(x_k\Delta x)^{x_k\Delta x+1}
= \sum^{n}_{k=1}x_k\Delta x(x_k\Delta x)^{x_k\Delta x}
$$

Therefore, using (2) for $n>N$:
$$
\sum^{n}_{k=1}x_k\Delta x(1-\varepsilon) < s_n < \sum^{n}_{k=1}x_k\Delta x(1+\varepsilon)\\
(1-\varepsilon)\lim_{n\to\infty}\sum^{n}_{k=1}x_k\Delta x \le \lim_{n\to\infty} s_n \le (1+\varepsilon)\lim_{n\to\infty}\sum^{n}_{k=1}x_k\Delta x\\
$$
With (1) we get:
$$(1-\varepsilon) \int_0^1 x\,dx \le \lim_{n\to\infty}s_n \le (1+\varepsilon) \int_0^1 x\,dx$$
which holds true for every $\varepsilon>0$.

Thus:
$$\lim_{n\to\infty} s_n = \int_0^1 x\,dx = \frac 12$$
 
  • Like
Likes   Reactions: juantheron
Klaas van Aarsen said:
One more variation. This time with an integral as Satya suggested.

Let $s_n = \sum^{n}_{k=1}\left(\frac{k}{n^2}\right)^{\frac{k}{n^2}+1}$.
Let $x_k = \frac kn$ and $\Delta x = \frac 1n$.

Then it follows from the definition of a Riemann integral that:
$$\lim_{n\to\infty}\sum_{k=1}^n x_k\Delta x = \int_0^1 x\,dx \tag 1$$

Using $\lim\limits_{x\to 0^+} x^x = 1$ we can find the following, as explained in my previous solution.

For every $\varepsilon > 0$ there is an $N$ such that for all $n>N$ and all $1\le k \le n$:
$$1-\varepsilon < (x_k \Delta x)^{x_k \Delta x} < 1+\varepsilon \tag 2$$

We have:
$$
s_n =\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}
= \sum^{n}_{k=1}(x_k\Delta x)^{x_k\Delta x+1}
= \sum^{n}_{k=1}x_k\Delta x(x_k\Delta x)^{x_k\Delta x}
$$

Therefore, using (2) for $n>N$:
$$
\sum^{n}_{k=1}x_k\Delta x(1-\varepsilon) < s_n < \sum^{n}_{k=1}x_k\Delta x(1+\varepsilon)\\
(1-\varepsilon)\lim_{n\to\infty}\sum^{n}_{k=1}x_k\Delta x \le \lim_{n\to\infty} s_n \le (1+\varepsilon)\lim_{n\to\infty}\sum^{n}_{k=1}x_k\Delta x\\
$$
With (1) we get:
$$(1-\varepsilon) \int_0^1 x\,dx \le \lim_{n\to\infty}s_n \le (1+\varepsilon) \int_0^1 x\,dx$$
which holds true for every $\epsilon>0$.

Thus:
$$\lim_{n\to\infty} s_n = \int_0^1 x\,dx = \frac 12$$

This solution in my view is the simplest and still rigorous.
 
Thanks friends for yours fantastic solutions

i have solved it using Integration.

after seeing above solutions by opalg and klass van have seems that my solution is partial (Not fully satisfactory)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
369
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K