MHB How to give a proof of tautologies?

  • Thread starter Thread starter Henry R
  • Start date Start date
  • Tags Tags
    Proof
AI Thread Summary
A tautology is defined as a proposition that is always true, while a contradiction is always false. The discussion includes examples of tautologies and contradictions, such as "p v p" as a tautology and "P ^ P" as a contradiction. Participants are asked to identify tautologies and provide proofs using logical rules rather than truth tables. Additionally, there is a technical issue regarding the visibility of images in the thread, which some users manage to resolve. The conversation emphasizes the importance of understanding logical equivalence and the rules of logic for proving tautologies.
Henry R
Messages
25
Reaction score
0
Okay. Hello =) =) I am confuse regarding to this matter.

Now, I'm going to write about tautologies.

A proposition p is always true is called a tautology. A proposition p that is always false is called a contradiction.

Example :
p v p is an example of tautology
P ^ P is an example of contradiction

Suppose that the compound proposition p is made up of
propositions p 1 ... p n and compound proposition q is made up of propositions q 1 ... q n , we say that p and q are logically equivalent and write it as p ≡ q
provided that given any truth values of p 1 ... p n and truth values of q 1 ... q n , either p and q are both true or p and q are both false.

View attachment 3461
_
View attachment 3459

Here's the question : Which of the following are tautologies? If the statement is a tautology, give a proof using the appropriate rules of logic. (Avoid using truth tables if possible.) If it is not a tautology, then justify your answer by giving an appropriate example for the following questions below :

View attachment 3460

Thank you so much for reading my thread. =)
 

Attachments

  • Table.PNG
    Table.PNG
    1.3 KB · Views: 132
  • Tautologies.PNG
    Tautologies.PNG
    3.7 KB · Views: 136
  • entah.PNG
    entah.PNG
    5.4 KB · Views: 135
Physics news on Phys.org
Henry R said:
p v p is an example of tautology
P ^ P is an example of contradiction
These must mean $p\lor\bar{p}$ and $p\land\bar{p}$.

Henry R said:
Here's the question : Which of the following are tautologies?
Have you figured this out using truth tables or common sense? For the first formula, is it true that $p$ always implies $p$ or $q$? For the second one, suppose that if you are free, then you go to the movies, and if you are busy, you also go to the movies. If it is known that you are either free, busy or went to the movies, does it follow that you are watching a movie?

Henry R said:
If the statement is a tautology, give a proof using the appropriate rules of logic.
The set of appropriate rules of logic differs from one textbook or course to the next. It would be nice if you listed them.
 
Evgeny.Makarov said:
These must mean $p\lor\bar{p}$ and $p\land\bar{p}$.

Have you figured this out using truth tables or common sense? For the first formula, is it true that $p$ always implies $p$ or $q$? For the second one, suppose that if you are free, then you go to the movies, and if you are busy, you also go to the movies. If it is known that you are either free, busy or went to the movies, does it follow that you are watching a movie?

The set of appropriate rules of logic differs from one textbook or course to the next. It would be nice if you listed them.

Um just wondering? Can you see the pictures?? the png pictures? It just I can't see it. But, by the way thank you so much.
 
Henry R said:
Um just wondering? Can you see the pictures?? the png pictures?
Do you mean the three images in post #1? Yes, I see them.

Henry R said:
It just I can't see it.
That's strange. Maybe you can start a thread about in the http://mathhelpboards.com/questions-comments-feedback-25/ subforum. You could post a screenshot there of how you see post #1.
 
Evgeny.Makarov said:
Do you mean the three images in post #1? Yes, I see them.

That's strange. Maybe you can start a thread about in the http://mathhelpboards.com/questions-comments-feedback-25/ subforum. You could post a screenshot there of how you see post #1.

Oh ya, now I can see it if I'm online.
 

Similar threads

Replies
12
Views
2K
Replies
17
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
16
Views
3K
Back
Top