MHB How to graph complex number fractions

AI Thread Summary
When graphing the complex number (3+4i)/25 on a complex plane, the x-coordinate is 3/25 and the y-coordinate is 4/25, not 4i/25. The real numbers are plotted on the x-axis and the imaginary numbers on the y-axis. To locate the point, draw a vertical line at 3/25 on the x-axis and a horizontal line at 4/25 on the y-axis. The intersection of these lines represents the complex number. The correct terminology is to refer to these as coordinates rather than points.
Raerin
Messages
46
Reaction score
0
If I'm graphing (3+4i)/25, would the x-point be 3/25 and the y-point be 4i/25?
 
Mathematics news on Phys.org
Raerin said:
If I'm graphing (3+4i)/25, would the x-point be 3/25 and the y-point be 4i/25?

Hi Raerin, :)

If you are marking the complex number \(\frac{3}{25}+i\frac{4}{25}\) on a complex plane you will have your real numbers on the x-axis and your imaginary numbers on your y-axis. First you will have to find \(\frac{3}{25}\) on the x-axis, draw a vertical line through that point. Then find \(\frac{4}{25}\) on the y-axis and draw a horizontal line through that point. The point where these two lines intersect would represent the complex number \(\frac{3}{25}+i \frac{4}{25}\).
 
Raerin said:
If I'm graphing (3+4i)/25, would the x-point be 3/25 and the y-point be 4i/25?
No quite but almost. You are just saying it wrong. It not "x point" and "y point" but "x coordinate" and "y coordinate" of the single point representing the complex number.

The x coordinate is 3/25 and the y coordinate is 4/25 (NOT "4i/25": numbers on the graph, being distances on a line, are real, not imaginary).

In general, the point representing a+ bi is (a, b), with x coordinate a and y coordinate b.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top