MHB How to graph complex number fractions

Raerin
Messages
46
Reaction score
0
If I'm graphing (3+4i)/25, would the x-point be 3/25 and the y-point be 4i/25?
 
Mathematics news on Phys.org
Raerin said:
If I'm graphing (3+4i)/25, would the x-point be 3/25 and the y-point be 4i/25?

Hi Raerin, :)

If you are marking the complex number \(\frac{3}{25}+i\frac{4}{25}\) on a complex plane you will have your real numbers on the x-axis and your imaginary numbers on your y-axis. First you will have to find \(\frac{3}{25}\) on the x-axis, draw a vertical line through that point. Then find \(\frac{4}{25}\) on the y-axis and draw a horizontal line through that point. The point where these two lines intersect would represent the complex number \(\frac{3}{25}+i \frac{4}{25}\).
 
Raerin said:
If I'm graphing (3+4i)/25, would the x-point be 3/25 and the y-point be 4i/25?
No quite but almost. You are just saying it wrong. It not "x point" and "y point" but "x coordinate" and "y coordinate" of the single point representing the complex number.

The x coordinate is 3/25 and the y coordinate is 4/25 (NOT "4i/25": numbers on the graph, being distances on a line, are real, not imaginary).

In general, the point representing a+ bi is (a, b), with x coordinate a and y coordinate b.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top