I How to obtain moment bound from the importance sampling identity?

  • I
  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Probability
WMDhamnekar
MHB
Messages
376
Reaction score
28
TL;DR Summary
Let ##m(t) =E[X^t]## The moment bound states that for a > 0, ##P\{ X \geq a \}\leq m(t)a^{-t} \forall t > 0##. How would you prove this result using importance sampling identity?
Let ##X## be a non-negative random variable and let a > 0. We want to bound the probability ##P\{X \geq a\}## in terms of the moments of X.
- Define a function ##h(x) = \mathbb{1}\{x \geq a\}##, where ##\mathbb{1}\{\cdot\}## is the indicator function that returns 1 if the argument is true and 0 otherwise. Then, we have ##P\{X \geq a\} = E_f[h(X)]##, where ##E_f## denotes the expected value with respect to the pdf of X.
- Choose another random variable Y with probability density function (pdf) ##f_Y(y)## such that ##f_Y(y) > 0## whenever ##f_X(y) > 0##, where ##f_X(x)## is the pdf of X. This is called the importance distribution. Define the importance weight as ##w(x) = f_X(x)/f_Y(x)##.
- Apply the importance sampling identity to write ##E_f[h(X)] = E_g\left[\frac{h(Y)w(Y)}{g(Y)}\right]## where the expectation on the right-hand side is taken with respect to Y.
Now how to proceed further? Can we use here Jensen's Inequality?
 
Physics news on Phys.org
My Answer:
The importance sampling identity states that for any measurable function f and random variable X with probability density function p, the expected value of f(X) can be expressed as:

##E[f(X)] = \int f(x) p(x) dx = \int f(x) \frac{p(x)}{q(x)} q(x) dx,##

where q is another probability density function that we choose. This identity allows us to estimate E[f(X)] by sampling from q instead of p.

Now, let's move on to proving the moment bound using the importance sampling identity. We want to show that for any positive number a and any positive exponent t, the probability that ##X^t## is greater than or equal to ##a^t## is bounded by ##m(t) \cdot a^{-t}##.

To do this, we will choose the function ##f(x) = \mathbb{I}(x \geq a)##, where ##\mathbb{I}## is the indicator function that takes the value 1 if the condition inside the parentheses is true, and 0 otherwise. By applying the importance sampling identity to ##f(x^t)##, we have:

##E[f(X^t)] = \int \mathbb{I}(x^t \geq a^t) \frac{p(x^t)}{q(x^t)} q(x^t) dx^t.##

Now, notice that when ##x^t \geq a^t##, the indicator function takes the value 1, and 0 otherwise. Therefore, we can rewrite the above expression as:

##E[f(X^t)] = \int \mathbb{I}(x^t \geq a^t) \frac{p(x^t)}{q(x^t)} q(x^t) dx^t = \int_{x^t \geq a^t} \frac{p(x^t)}{q(x^t)} q(x^t) dx^t.##

Now, let's focus on the integral ##\int_{x^t \geq a^t} \frac{p(x^t)}{q(x^t)} q(x^t) dx^t##. We can rewrite this integral as the expectation of the random variable ##\frac{p(X^t)}{q(X^t)} \cdot q(X^t)##, where ##X^t## is sampled from the distribution q. Therefore, we have:

##E[f(X^t)]=\int_{x^t \geq a^t} \frac{p(x^t)}{q(x^t)} q(x^t) dx^t = E\left[\frac{p(X^t)}{q(X^t)} \cdot q(X^t)\right].##

Now, since ##\frac{p(X^t)}{q(X^t)} \cdot q(X^t)## is a non-negative random variable, we can apply Markov's inequality, which states that for any non-negative random variable Y and any positive constant c, we have ##P\{Y \geq c\} \leq \frac{E[Y]}{c}##. Applying Markov's inequality to our expression, we get:

##P\left\{\frac{p(X^t)}{q(X^t)} \cdot q(X^t) \geq {a^t}\right\} \leq \frac{E\left[\frac{p(X^t)}{q(X^t)} \cdot q(X^t)\right]}{a^t} =m(t) {a^{-t}}.##

But notice that the event ##\left\{\frac{p(X^t)}{q(X^t)} \cdot q(X^t) \geq {a^t}\right\}## is equivalent to the event ##\left\{X^t \geq a^t\right\}##. Therefore, we have:

##P\left\{X^t \geq a^t\right\} \leq {m(t)}{a^{-t}}.##

And there you have it! We have successfully proved the moment bound using the importance sampling identity. This result tells us that for any positive number a and any positive exponent t, the probability that ##X^t## is greater than or equal to ##a^t## is bounded by ##m(t) \cdot a^{-t}##.

I think now this answer seems to look correct. Isn't it?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top