Undergrad How to obtain moment bound from the importance sampling identity?

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The discussion focuses on deriving moment bounds for a non-negative random variable ##X## using the importance sampling identity. It establishes that the probability ##P\{X \geq a\}## can be expressed in terms of moments, specifically showing that for any positive number ##a## and exponent ##t##, the probability that ##X^t## exceeds ##a^t## is bounded by ##m(t) \cdot a^{-t}##. The importance sampling identity is applied effectively, utilizing the indicator function and Markov's inequality to achieve the desired result.

PREREQUISITES
  • Understanding of random variables and probability density functions (pdf)
  • Familiarity with importance sampling techniques
  • Knowledge of Markov's inequality
  • Basic concepts of moment generating functions
NEXT STEPS
  • Study the application of importance sampling in Monte Carlo methods
  • Learn about the properties of moment generating functions
  • Explore advanced applications of Markov's inequality in probability theory
  • Investigate the relationship between moment bounds and convergence in probability
USEFUL FOR

Mathematicians, statisticians, data scientists, and researchers interested in probability theory and statistical inference, particularly those working with random variables and sampling methods.

WMDhamnekar
MHB
Messages
378
Reaction score
30
TL;DR
Let ##m(t) =E[X^t]## The moment bound states that for a > 0, ##P\{ X \geq a \}\leq m(t)a^{-t} \forall t > 0##. How would you prove this result using importance sampling identity?
Let ##X## be a non-negative random variable and let a > 0. We want to bound the probability ##P\{X \geq a\}## in terms of the moments of X.
- Define a function ##h(x) = \mathbb{1}\{x \geq a\}##, where ##\mathbb{1}\{\cdot\}## is the indicator function that returns 1 if the argument is true and 0 otherwise. Then, we have ##P\{X \geq a\} = E_f[h(X)]##, where ##E_f## denotes the expected value with respect to the pdf of X.
- Choose another random variable Y with probability density function (pdf) ##f_Y(y)## such that ##f_Y(y) > 0## whenever ##f_X(y) > 0##, where ##f_X(x)## is the pdf of X. This is called the importance distribution. Define the importance weight as ##w(x) = f_X(x)/f_Y(x)##.
- Apply the importance sampling identity to write ##E_f[h(X)] = E_g\left[\frac{h(Y)w(Y)}{g(Y)}\right]## where the expectation on the right-hand side is taken with respect to Y.
Now how to proceed further? Can we use here Jensen's Inequality?
 
Physics news on Phys.org
My Answer:
The importance sampling identity states that for any measurable function f and random variable X with probability density function p, the expected value of f(X) can be expressed as:

##E[f(X)] = \int f(x) p(x) dx = \int f(x) \frac{p(x)}{q(x)} q(x) dx,##

where q is another probability density function that we choose. This identity allows us to estimate E[f(X)] by sampling from q instead of p.

Now, let's move on to proving the moment bound using the importance sampling identity. We want to show that for any positive number a and any positive exponent t, the probability that ##X^t## is greater than or equal to ##a^t## is bounded by ##m(t) \cdot a^{-t}##.

To do this, we will choose the function ##f(x) = \mathbb{I}(x \geq a)##, where ##\mathbb{I}## is the indicator function that takes the value 1 if the condition inside the parentheses is true, and 0 otherwise. By applying the importance sampling identity to ##f(x^t)##, we have:

##E[f(X^t)] = \int \mathbb{I}(x^t \geq a^t) \frac{p(x^t)}{q(x^t)} q(x^t) dx^t.##

Now, notice that when ##x^t \geq a^t##, the indicator function takes the value 1, and 0 otherwise. Therefore, we can rewrite the above expression as:

##E[f(X^t)] = \int \mathbb{I}(x^t \geq a^t) \frac{p(x^t)}{q(x^t)} q(x^t) dx^t = \int_{x^t \geq a^t} \frac{p(x^t)}{q(x^t)} q(x^t) dx^t.##

Now, let's focus on the integral ##\int_{x^t \geq a^t} \frac{p(x^t)}{q(x^t)} q(x^t) dx^t##. We can rewrite this integral as the expectation of the random variable ##\frac{p(X^t)}{q(X^t)} \cdot q(X^t)##, where ##X^t## is sampled from the distribution q. Therefore, we have:

##E[f(X^t)]=\int_{x^t \geq a^t} \frac{p(x^t)}{q(x^t)} q(x^t) dx^t = E\left[\frac{p(X^t)}{q(X^t)} \cdot q(X^t)\right].##

Now, since ##\frac{p(X^t)}{q(X^t)} \cdot q(X^t)## is a non-negative random variable, we can apply Markov's inequality, which states that for any non-negative random variable Y and any positive constant c, we have ##P\{Y \geq c\} \leq \frac{E[Y]}{c}##. Applying Markov's inequality to our expression, we get:

##P\left\{\frac{p(X^t)}{q(X^t)} \cdot q(X^t) \geq {a^t}\right\} \leq \frac{E\left[\frac{p(X^t)}{q(X^t)} \cdot q(X^t)\right]}{a^t} =m(t) {a^{-t}}.##

But notice that the event ##\left\{\frac{p(X^t)}{q(X^t)} \cdot q(X^t) \geq {a^t}\right\}## is equivalent to the event ##\left\{X^t \geq a^t\right\}##. Therefore, we have:

##P\left\{X^t \geq a^t\right\} \leq {m(t)}{a^{-t}}.##

And there you have it! We have successfully proved the moment bound using the importance sampling identity. This result tells us that for any positive number a and any positive exponent t, the probability that ##X^t## is greater than or equal to ##a^t## is bounded by ##m(t) \cdot a^{-t}##.

I think now this answer seems to look correct. Isn't it?
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K