MHB How to prove convergence of integrals using almost everywhere convergence?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion revolves around proving the convergence of integrals of measurable functions under almost everywhere convergence conditions. It establishes that if two sequences of functions, {f_n} and {g_n}, satisfy the condition |f_n(x)| ≤ g_n(x) and converge almost everywhere, then the convergence of the integrals of g_n implies the convergence of the integrals of f_n. The solutions provided by participants PaulRS and girdav effectively demonstrate this relationship through appropriate mathematical reasoning. The focus is on leveraging the properties of measurable functions and the Dominated Convergence Theorem. The thread highlights the importance of these concepts in understanding integral convergence in analysis.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Suppose that $\{f_n(x)\}$ and $\{g_n(x)\}$ are two sequences of measurable functions (on $\mathbb{R}$) such that $|f_n(x)|\leq g_n(x)$ for each $n=1,2,\ldots$. And suppose that $f_n$ converges to $f$ and that $g_n$ converges to $g$ almost everywhere. Show that
\[\lim_{n\to\infty}\int_{\mathbb{R}} g_n\,dm = \int_{\mathbb{R}} g\,dm\]
implies that
\[\lim_{n\to\infty}\int_{\mathbb{R}} f_n\,dm = \int_{\mathbb{R}} f\,dm\]

-----

 
Physics news on Phys.org
This week's problem was correctly answered by PaulRS and girdav.

Here's my solution:

Proof: Let $\{g_n\}$ be a sequence of Lebesgue integrable functions such that $g_n\rightarrow g$ almost everywhere and $\displaystyle\int_{\mathbb{R}} g_n\,dm\rightarrow \int_{\mathbb{R}} g\,dm$, and let $\{f_n\}$ be a sequence of Lebesgue measurable functions such that $|f_n|\leq g_n$ and $f_n\rightarrow f$ almost everywhere. Since $|f_n|\leq g_n$, we have $|f|\leq g$. Thus, $|f_n-f|\leq |f_n| + |f|\leq g_n+g$ and $\{g_n+g-|f_n-f|\}$ is a sequence of non-negative measurable functions. Therefore, by Fatou's lemma, we have\[\int_{\mathbb{R}}\liminf(g_n+g-|f_n-f|)\,dm\leq \liminf\int_{\mathbb{R}} (g_n+g-|f_n-f|)\,dm\]
This implies that
\[\int_{\mathbb{R}} 2g\,dm \leq \int_{\mathbb{R}} 2g\,dm+\liminf\left(-\int_{\mathbb{R}}|f_n-f|\,dm\right)=\int_{\mathbb{R}} 2g\,dm -\limsup\int_{\mathbb{R}} |f_n-f|\,dm\]
Hence, we see that
\[\limsup\int_{\mathbb{R}}|f_n-f|\,dm\leq 0\leq \liminf\int_{\mathbb{R}}|f_n-f|\,dm\]
and thus we have $\displaystyle\int_{\mathbb{R}}|f_n-f|\,dm\rightarrow 0$.Therefore, we see that $\displaystyle\int_{\mathbb{R}} g_n\,dm\rightarrow \int_{\mathbb{R}} g\,dm$ implies that $\displaystyle\int_{\mathbb{R}} f_n\,dm\rightarrow\int_{\mathbb{R}} f\,dm$. Q.E.D.

and here's PaulRS's solution:

Since $|f_n| \leq g_n$ we have that $g_n - f_n \geq 0$ and $g_n + f_n \geq 0$, and so we have $L^+$ functions and we may apply Fatou's Lemma:

\[\int g dm - \int f dm = \int (g-f)dm = \int \liminf (g_n - f_n) dm \leq \liminf \int (g_n - f_n) dm = \liminf \left( \int g_n dm - \int f_n dm \right) = \int g dm - \limsup \int f_n dm \]where we have used that $\liminf g_n = g$ and $\liminf f_n = f$ almost everywhere, $\lim \int g_n dm = \int g dm$ (and so the liminf is the sum of the limit plus the liminf) and $-\limsup \left( ... \right) = \liminf (-...)$.Similarly : \[\int g dm + \int f dm = \int (g+f)dm = \int \liminf (g_n +f_n) dm \leq \liminf \int (g_n+ f_n) dm = \liminf \left( \int g_n dm + \int f_n dm \right) = \int g dm + \liminf \int f_n dm \]Now, these two inequalities translate to\[\limsup \int f_n dm \leq \int f dm \leq \liminf \int f_n dm\]which proves the assertion. $\square$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 9 ·
Replies
9
Views
2K