How to Prove the Inequality of the Sequence T_n?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The discussion focuses on proving the inequality of the sequence defined as $T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$. The established inequalities are $\sqrt{\dfrac{n+1}{2n+1}} PREREQUISITES

  • Understanding of sequences and series in mathematics.
  • Familiarity with inequalities and their proofs.
  • Knowledge of product notation and summation techniques.
  • Basic algebraic manipulation skills.
NEXT STEPS
  • Study the properties of convergent series and their applications.
  • Learn about the Cauchy-Schwarz inequality and its implications in sequences.
  • Explore advanced techniques in mathematical induction for proving inequalities.
  • Investigate the behavior of sequences involving products and their convergence.
USEFUL FOR

Mathematicians, students studying advanced calculus or real analysis, and anyone interested in sequence inequalities and their proofs.

Albert1
Messages
1,221
Reaction score
0
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$
 
Last edited by a moderator:
Physics news on Phys.org
Albert said:
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$
Could you please check the wording of this problem. The right-hand inequality is clearly false (each of the $n$ terms in the sum $T_n$ is close to $1$, yet their sum is supposed to be less than $\sqrt{(2n+3)/(3n+3)}$, which is less than $1$).
 
Albert said:
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$

sory : a typo !

$T_n=\left(1-\dfrac{1}{3^2} \right)\times \left(1-\dfrac{1}{5^2} \right)\times \left(1-\dfrac{1}{7^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+1)^2} \right]$
 
Albert said:
$T_n=\left(1-\dfrac{1}{3^2} \right)\times \left(1-\dfrac{1}{5^2} \right)\times \left(1-\dfrac{1}{7^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+1)^2} \right]$
prove :
$ \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$

let $P_n=\left(1-\dfrac{1}{2^2} \right)\times \left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n)^2} \right]$

let $Q_n=\left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \left(1-\dfrac{1}{8^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+2)^2} \right]$

$ T_nP_n=\dfrac{n+1}{2n+1},\,\,\, $$ T_nQ_n=\dfrac{2n+3}{3n+3}$

but $P_n<T_n<Q_n$

$\therefore \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$
 
Albert said:
prove :
$ \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$

let $P_n=\left(1-\dfrac{1}{2^2} \right)\times \left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n)^2} \right]$

let $Q_n=\left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \left(1-\dfrac{1}{8^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+2)^2} \right]$

$ T_nP_n=\dfrac{n+1}{2n+1},\,\,\, $$ T_nQ_n=\dfrac{2n+3}{3n+3}$

but $P_n<T_n<Q_n$

$\therefore \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$
View attachment 707 Easy, once you have seen it!
 

Attachments

  • 15274680-light-bulb-icon.jpg
    15274680-light-bulb-icon.jpg
    811 bytes · Views: 92

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
953