MHB How to Prove the Inequality of the Sequence T_n?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion centers on proving the inequality for the sequence T_n, defined as the sum of terms of the form \(1 - \frac{1}{(2k+1)^2}\) for k from 1 to n. Participants initially question the validity of the right-hand inequality, suggesting it is incorrect since each term in T_n approaches 1. The correct approach involves defining two products, P_n and Q_n, which bound T_n and lead to the conclusion that \( \sqrt{\frac{n+1}{2n+1}} < T_n < \sqrt{\frac{2n+3}{3n+3}} \). The final consensus affirms the inequality is valid, emphasizing the importance of proper definitions in mathematical proofs. The discussion concludes with a note that the proof becomes straightforward once the correct relationships are established.
Albert1
Messages
1,221
Reaction score
0
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Albert said:
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$
Could you please check the wording of this problem. The right-hand inequality is clearly false (each of the $n$ terms in the sum $T_n$ is close to $1$, yet their sum is supposed to be less than $\sqrt{(2n+3)/(3n+3)}$, which is less than $1$).
 
Albert said:
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$

sory : a typo !

$T_n=\left(1-\dfrac{1}{3^2} \right)\times \left(1-\dfrac{1}{5^2} \right)\times \left(1-\dfrac{1}{7^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+1)^2} \right]$
 
Albert said:
$T_n=\left(1-\dfrac{1}{3^2} \right)\times \left(1-\dfrac{1}{5^2} \right)\times \left(1-\dfrac{1}{7^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+1)^2} \right]$
prove :
$ \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$

let $P_n=\left(1-\dfrac{1}{2^2} \right)\times \left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n)^2} \right]$

let $Q_n=\left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \left(1-\dfrac{1}{8^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+2)^2} \right]$

$ T_nP_n=\dfrac{n+1}{2n+1},\,\,\, $$ T_nQ_n=\dfrac{2n+3}{3n+3}$

but $P_n<T_n<Q_n$

$\therefore \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$
 
Albert said:
prove :
$ \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$

let $P_n=\left(1-\dfrac{1}{2^2} \right)\times \left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n)^2} \right]$

let $Q_n=\left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \left(1-\dfrac{1}{8^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+2)^2} \right]$

$ T_nP_n=\dfrac{n+1}{2n+1},\,\,\, $$ T_nQ_n=\dfrac{2n+3}{3n+3}$

but $P_n<T_n<Q_n$

$\therefore \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$
View attachment 707 Easy, once you have seen it!
 

Attachments

  • 15274680-light-bulb-icon.jpg
    15274680-light-bulb-icon.jpg
    811 bytes · Views: 90
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
960
  • · Replies 2 ·
Replies
2
Views
1K