MHB How to Prove the Inequality of the Sequence T_n?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion centers on proving the inequality for the sequence T_n, defined as the sum of terms of the form \(1 - \frac{1}{(2k+1)^2}\) for k from 1 to n. Participants initially question the validity of the right-hand inequality, suggesting it is incorrect since each term in T_n approaches 1. The correct approach involves defining two products, P_n and Q_n, which bound T_n and lead to the conclusion that \( \sqrt{\frac{n+1}{2n+1}} < T_n < \sqrt{\frac{2n+3}{3n+3}} \). The final consensus affirms the inequality is valid, emphasizing the importance of proper definitions in mathematical proofs. The discussion concludes with a note that the proof becomes straightforward once the correct relationships are established.
Albert1
Messages
1,221
Reaction score
0
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Albert said:
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$
Could you please check the wording of this problem. The right-hand inequality is clearly false (each of the $n$ terms in the sum $T_n$ is close to $1$, yet their sum is supposed to be less than $\sqrt{(2n+3)/(3n+3)}$, which is less than $1$).
 
Albert said:
$ T_n=\left(1-\dfrac{1}{3^2} \right)+\left(1-\dfrac{1}{5^2} \right)+\left(1-\dfrac{1}{7^2} \right)+\cdots+\left[1-\dfrac{1}{(2n+1)^2} \right]$

prove: $ \sqrt{\dfrac{n+1}{2n+1}}<T_n<\sqrt{\dfrac{2n+3}{3n+3}}$

sory : a typo !

$T_n=\left(1-\dfrac{1}{3^2} \right)\times \left(1-\dfrac{1}{5^2} \right)\times \left(1-\dfrac{1}{7^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+1)^2} \right]$
 
Albert said:
$T_n=\left(1-\dfrac{1}{3^2} \right)\times \left(1-\dfrac{1}{5^2} \right)\times \left(1-\dfrac{1}{7^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+1)^2} \right]$
prove :
$ \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$

let $P_n=\left(1-\dfrac{1}{2^2} \right)\times \left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n)^2} \right]$

let $Q_n=\left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \left(1-\dfrac{1}{8^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+2)^2} \right]$

$ T_nP_n=\dfrac{n+1}{2n+1},\,\,\, $$ T_nQ_n=\dfrac{2n+3}{3n+3}$

but $P_n<T_n<Q_n$

$\therefore \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$
 
Albert said:
prove :
$ \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$

let $P_n=\left(1-\dfrac{1}{2^2} \right)\times \left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n)^2} \right]$

let $Q_n=\left(1-\dfrac{1}{4^2} \right)\times \left(1-\dfrac{1}{6^2} \right)\times \left(1-\dfrac{1}{8^2} \right)\times \cdots\times \left[1-\dfrac{1}{(2n+2)^2} \right]$

$ T_nP_n=\dfrac{n+1}{2n+1},\,\,\, $$ T_nQ_n=\dfrac{2n+3}{3n+3}$

but $P_n<T_n<Q_n$

$\therefore \sqrt{\dfrac {n+1}{2n+1}}<T_n < \sqrt{\dfrac {2n+3}{3n+3}}$
View attachment 707 Easy, once you have seen it!
 

Attachments

  • 15274680-light-bulb-icon.jpg
    15274680-light-bulb-icon.jpg
    811 bytes · Views: 88
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
924
  • · Replies 2 ·
Replies
2
Views
997