B How to relate relativistic kinetic energy and momentum

greg_rack
Gold Member
Messages
361
Reaction score
79
Hi guys,

a special relativity problem requested to choose the right graph representing relativistic momentum ##p## as a function of rel. kinetic energy ##K##, from these four:
IMG_C89C1901D709-1.jpeg
At first, I tried writing ##p## as a function of ##K##, in order to then analyze the function's graph and see if it matches one of the four above, being ##p=\gamma mv## and ##K=mc^2(\gamma - 1)##, but I couldn't rearrange those two in such a way.
By deduction, I believe the graph should be C or D, since momentum would reasonably tend to infinity in a non-linear way(A) due to the presence of factor ##\gamma##, nor as indicated by B...
 
Last edited:
Physics news on Phys.org
You have an equation for ##p(\gamma, v)## and an equation for ##K(\gamma)##, so of course, you cannot use them to find an equation ##p(K)##, you need an extra equation, do you know of any equation that relates ##\gamma## and ##v##?
 
Gaussian97 said:
You have an equation for ##p(\gamma, v)## and an equation for ##K(\gamma)##, so of course, you cannot use them to find an equation ##p(K)##, you need an extra equation, do you know of any equation that relates ##\gamma## and ##v##?
Aren't ##\gamma## and ##v## simply related by ##\gamma##'s definition ##\gamma=\frac{1}{\sqrt{1-\beta ^2}}##, being ##\beta## the velocity in terms of ##c##?
 
greg_rack said:
Aren't ##\gamma## and ##v## simply related by ##\gamma##'s definition ##\gamma=\frac{1}{\sqrt{1-\beta ^2}}##, being ##\beta## the velocity in terms of ##c##?
Yes. So you should be able to write ##p(v)## and ##K(v)## and hence ##K(p)##.

Alternatively, do you know anything about ##E^2## and ##p^2c^2##?
 
  • Like
Likes greg_rack
Ibix said:
Alternatively, do you know anything about ##E^2## and ##p^2c^2##?
Yes, ##E^2=p^2c^2+m^2c^{4}##.
Rearranging, it indeed gets ##p(E)=\frac{1}{c}\sqrt{E^2-E_0^2}##, hence:
$$p(K)=\frac{1}{c}\sqrt{K(K+2E_0)}$$
which corresponds to graph C :)
 
  • Like
Likes Ibix and PeroK
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top