B How to relate relativistic kinetic energy and momentum

greg_rack
Gold Member
Messages
361
Reaction score
79
Hi guys,

a special relativity problem requested to choose the right graph representing relativistic momentum ##p## as a function of rel. kinetic energy ##K##, from these four:
IMG_C89C1901D709-1.jpeg
At first, I tried writing ##p## as a function of ##K##, in order to then analyze the function's graph and see if it matches one of the four above, being ##p=\gamma mv## and ##K=mc^2(\gamma - 1)##, but I couldn't rearrange those two in such a way.
By deduction, I believe the graph should be C or D, since momentum would reasonably tend to infinity in a non-linear way(A) due to the presence of factor ##\gamma##, nor as indicated by B...
 
Last edited:
Physics news on Phys.org
You have an equation for ##p(\gamma, v)## and an equation for ##K(\gamma)##, so of course, you cannot use them to find an equation ##p(K)##, you need an extra equation, do you know of any equation that relates ##\gamma## and ##v##?
 
Gaussian97 said:
You have an equation for ##p(\gamma, v)## and an equation for ##K(\gamma)##, so of course, you cannot use them to find an equation ##p(K)##, you need an extra equation, do you know of any equation that relates ##\gamma## and ##v##?
Aren't ##\gamma## and ##v## simply related by ##\gamma##'s definition ##\gamma=\frac{1}{\sqrt{1-\beta ^2}}##, being ##\beta## the velocity in terms of ##c##?
 
greg_rack said:
Aren't ##\gamma## and ##v## simply related by ##\gamma##'s definition ##\gamma=\frac{1}{\sqrt{1-\beta ^2}}##, being ##\beta## the velocity in terms of ##c##?
Yes. So you should be able to write ##p(v)## and ##K(v)## and hence ##K(p)##.

Alternatively, do you know anything about ##E^2## and ##p^2c^2##?
 
  • Like
Likes greg_rack
Ibix said:
Alternatively, do you know anything about ##E^2## and ##p^2c^2##?
Yes, ##E^2=p^2c^2+m^2c^{4}##.
Rearranging, it indeed gets ##p(E)=\frac{1}{c}\sqrt{E^2-E_0^2}##, hence:
$$p(K)=\frac{1}{c}\sqrt{K(K+2E_0)}$$
which corresponds to graph C :)
 
  • Like
Likes Ibix and PeroK
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Back
Top