Ugh, that is a bad sign. It means the professor is decades out of date with their source material. I would solve this using the four-momentum as follows
The four momentum is ##P=(E/c,p_x,p_y,p_z)##, for convenience I will use units where ##c=1## and ##m##, ##E##, and ##p## are all measured in ##\mathrm{MeV}##. We can ignore ##y## and ##z## here, so I will just drop those. The four-momentum is conserved, so setting the four-momentum before the scattering equal to the four-momentum after the scattering we get $$P_{photon,before} + P_{electron,before}=P_{photon,after}+P_{electron,after}$$$$(0.51,0.51) + (0.51,0.00) = (E_{photon,after},p_{photon,after}) + (E_{electron,after},p_{electron,after})$$ This gives us two equations in four unknowns, so we use the general equation ##m^2=E^2-p^2## to get two more equations $$0=E^2_{photon,after} - p^2_{photon,after}$$$$0.51^2=E^2_{electron,after}-p^2_{electron,after}$$
Solve to get $$E_{photon,after}=0.17$$$$p_{photon,after}=-0.17$$$$E_{electron,after}=0.85$$$$p_{electron,after}=0.68$$ and we can easily get the velocity of the electron with $$v_{electron,after}=\frac{p_{electron,after}}{E_{electron,after}}=0.8$$ and the kinetic energy of the electron with $$KE_{electron,after}=E_{electron,after}-m_{electron} = 0.34$$