MHB How to show a graph contains no Hamilton cycles?

annie122
Messages
51
Reaction score
0
Here is the graph in question:
a1642v.jpg


The edges in red are the paths that must be included in the cycle, since vertices
a, k, e, and o have only degree 2.
I listed all possible routes starting from vertex b, and showed that they all routes closes a cycle while leaving some vertex disconnected.

Is there a more efficient way?
In general, when asked to show that a graph doesn't contain something, what is the usual procedure for proving it?
 
Physics news on Phys.org
Yuuki said:
Here is the graph in question:
a1642v.jpg


The edges in red are the paths that must be included in the cycle, since vertices
a, k, e, and o have only degree 2.
I listed all possible routes starting from vertex b, and showed that they all routes closes a cycle while leaving some vertex disconnected.

Is there a more efficient way?
In general, when asked to show that a graph doesn't contain something, what is the usual procedure for proving it?

Hi Yuuki, :)

Several algorithms to solve this kind of a problem is discussed >>here<<. Specially you might like to read >>this<<.
 
Thank you for the reply for this thread and the other one.
I'll definitely read the PDF.
 
Yuuki said:
Thank you for the reply for this thread and the other one.
I'll definitely read the PDF.

You are welcome. (Handshake)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top