MHB How to show that $G(s) = \dfrac{F(s)}{s}$ for Laplace transforms of integrals?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
To show that \( G(s) = \frac{F(s)}{s} \) for the Laplace transforms of integrals, start with the definition of the Laplace transform for \( g(t) = \int_0^t f(\tau)\,d\tau \). By applying the properties of Laplace transforms, specifically the integral property, it can be derived that \( G(s) = \mathcal{L}\{g(t)\} \) leads to \( G(s) = \frac{F(s)}{s} \). Both participants, BAdhi and Sudharaka, provided correct solutions to this problem, demonstrating the relationship between the transforms of a function and its integral. This relationship is fundamental in control theory and signal processing. Understanding this concept is crucial for effectively applying Laplace transforms in various mathematical and engineering contexts.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Suppose that $\displaystyle g(t) = \int_0^t f(\tau)\,d\tau$. If $G(s)$ and $F(s)$ are the Laplace transforms of $g(t)$ and $f(t)$ respectively, show that $G(s) = \dfrac{F(s)}{s}$.

Recall that $\displaystyle F(s) = \mathcal{L}\{f(t)\} = \int_0^{\infty} e^{-st}f(t)\,dt$.

-----

 
Physics news on Phys.org
This week's problem was correctly answered by BAdhi and Sudharaka.

Sudharaka's solution:

\[g(t) = \int_0^t f(\tau)\,d\tau\]

\begin{eqnarray}G(s)&=&\mathcal{L}\{g(t)\}\\&=&\int_0^{\infty} e^{-st}\int_0^t f(\tau)\,d\tau\,dt\\&=&\int_0^{\infty}\int_{0}^{t}e^{-st}f(\tau)\,d\tau\,dt\end{eqnarray}Note that, \(0<\tau<t<\infty\). Changing the order of integration we get,\begin{eqnarray}G(s)&=&\int_0^{\infty}\int_{\tau}^{\infty}e^{-st}f(\tau)\,dt\,d\tau\\&=&\int_0^{\infty}f(\tau)\int_{\tau}^{\infty}e^{-st}\,dt\,d\tau\\&=&\int_0^{\infty}f(\tau)\frac{e^{-s\tau}}{s}\,d\tau\\&=&\frac{1}{s}\int_0^{\infty}e^{-s\tau}f(\tau)\,d\tau\\\therefore G(s)=\frac{F(s)}{s}\end{eqnarray}

BAdhi's solution:

Let's consider the laplace transform of $g(t)$

$$G(s)=\mathcal{L}\{g(t)\}=\int_0^\infty e^{-st}g(t)\, dt$$since, $g(t)=\displaystyle \int_0^t f(\tau )\, d\tau$$$\begin{align*}
\mathcal{L}\{g(t)\}&=\int \limits_0^\infty e^{-st}g(t)\, dt \\ &=\int \limits_0^\infty e^{-st}\left[ \int_0^t f(\tau )\, d\tau \right] dt \\ &=\int \limits_{0}^{\infty}\int \limits_{0}^{t} e^{-st}f(\tau )\, d\tau dt\\ \end{align*}$$By switching variables, the boundaries of $t$ and $\tau$ changes as,$0<\tau<\infty$ and $\,\tau<t<\infty$then,$$
\mathcal{L}\{g(t)\}=\int \limits_0^\infty \int \limits_\tau^\infty e^{-st}f(\tau )\, dtd\tau $$since $f(\tau )$ is independent on $t$,$$\begin{align*}
\mathcal{L}\{g(t)\}&=\int \limits_{0}^{\infty}f(\tau )\left[ \int \limits_\tau^\infty e^{-st}\,dt \right] d\tau \\ &=\int \limits_0^\infty f(\tau ) \left[ \frac{e^{-st}}{-s}\right] _\tau^\infty \,d\tau \\ &=\int \limits_0^\infty f(\tau ) \left[ \frac{0-e^{-s\tau }}{-s}\right] \,d\tau (when s>0) \\&=\frac{\displaystyle \int \limits_0^\infty f(\tau ) e^{-s\tau }\,d\tau }{s}\\ &=\frac{\displaystyle \int \limits_0^\infty f(t) e^{-st }\,dt }{s}\\ &=\frac{F(s)}{s} \end{align*}$$$$\therefore \; G(s)=\frac{F(s)}{s}$$ for $s>0$
 

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K