MHB How to Solve a Problem Using Binomial Distribution and Normal Table?

isa2
Messages
2
Reaction score
0
I have an assignment
1z22b9f.png
which is a bit different,
I have to use Mathematics Handbook for Sience and Engineering to solve the problem,
I can look it up in tables. But the tables for binomial functions is only up to 20,
Normal Distribution to 3.4 and Poisson up to 24 in some cases.
So how do I do it? Approximation of some kind?
 
Last edited by a moderator:
Mathematics news on Phys.org
isa said:
I have an assignment image.png - Speedy Share - upload your files here which is a bit different,
I have to use Mathematics Handbook for Sience and Engineering to solve the problem,
I can look it up in tables. But the tables for binomial functions is only up to 20,
Normal Distribution to 3.4 and Poisson up to 24 in some cases.
So how do I do it? Approximation of some kind?

If you really want help try posting your question in a form that does not require helpers to jump through multiple hoops just to see it.

Your question is:

P(X<65) where X ~B(100,0.7)

CB
 
CaptainBlack said:
Your question is:

P(X<65) where X ~B(100,0.7)

CB

X is approximately ~N(70,21) (since the mean is Np and the variance is Np(1-p)), so P(X<65) ~= F((65-70)/sqrt(21)) where F denotes the cumulative standard normal, which is about 13.8%.

CB
 
CaptainBlack said:
X is approximately ~N(70,21) (since the mean is Np and the variance is Np(1-p)), so P(X<65) ~= F((65-70)/sqrt(21)) where F denotes the cumulative standard normal, which is about 13.8%.

CB

If I understan you corectly F((65-70)/sqrt(21)) = F(1.09108..)? And then look it up in the Normal table witch is 0.8621 or 0.8643 I'm not quite sure.
And then take 1-0.8621 and you get 0.1379?
Is that how you do it?

You do not have to include F((0-70)/sqrt(21)) ?
Since it is < 65? so like F((65-70)/sqrt(21)) -F((0-70)/sqrt(21))?
 
isa said:
If I understan you corectly F((65-70)/sqrt(21)) = F(1.09108..)? And then look it up in the Normal table witch is 0.8621 or 0.8643 I'm not quite sure.
And then take 1-0.8621 and you get 0.1379?
Is that how you do it?

You do not have to include F((0-70)/sqrt(21)) ?
Since it is < 65? so like F((65-70)/sqrt(21)) -F((0-70)/sqrt(21))?

More or less, but a continuity correction may be appropriate:

The continuity corrections would give F( (65.5-70)/sqrt(21) ) ~= 0.163

CB
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top