How to Solve a Problem Using Binomial Distribution and Normal Table?

Click For Summary
SUMMARY

This discussion focuses on solving a binomial distribution problem using normal approximation techniques. The specific problem involves calculating P(X<65) for X ~ B(100, 0.7). Participants confirm that the mean is 70 and the variance is 21, leading to the approximation P(X<65) ≈ F((65-70)/sqrt(21)). The final result, after applying continuity correction, yields a probability of approximately 0.163.

PREREQUISITES
  • Understanding of binomial distribution and its parameters
  • Familiarity with normal distribution and cumulative distribution functions
  • Knowledge of continuity correction in statistical approximations
  • Ability to interpret values from statistical tables
NEXT STEPS
  • Study the application of continuity correction in binomial to normal approximations
  • Learn how to derive mean and variance for binomial distributions
  • Explore the use of normal distribution tables for cumulative probabilities
  • Investigate the implications of using Poisson distribution for approximation
USEFUL FOR

Students in statistics, mathematicians, and professionals involved in data analysis who need to apply binomial and normal distribution concepts in practical scenarios.

isa2
Messages
2
Reaction score
0
I have an assignment
1z22b9f.png
which is a bit different,
I have to use Mathematics Handbook for Sience and Engineering to solve the problem,
I can look it up in tables. But the tables for binomial functions is only up to 20,
Normal Distribution to 3.4 and Poisson up to 24 in some cases.
So how do I do it? Approximation of some kind?
 
Last edited by a moderator:
Physics news on Phys.org
isa said:
I have an assignment image.png - Speedy Share - upload your files here which is a bit different,
I have to use Mathematics Handbook for Sience and Engineering to solve the problem,
I can look it up in tables. But the tables for binomial functions is only up to 20,
Normal Distribution to 3.4 and Poisson up to 24 in some cases.
So how do I do it? Approximation of some kind?

If you really want help try posting your question in a form that does not require helpers to jump through multiple hoops just to see it.

Your question is:

P(X<65) where X ~B(100,0.7)

CB
 
CaptainBlack said:
Your question is:

P(X<65) where X ~B(100,0.7)

CB

X is approximately ~N(70,21) (since the mean is Np and the variance is Np(1-p)), so P(X<65) ~= F((65-70)/sqrt(21)) where F denotes the cumulative standard normal, which is about 13.8%.

CB
 
CaptainBlack said:
X is approximately ~N(70,21) (since the mean is Np and the variance is Np(1-p)), so P(X<65) ~= F((65-70)/sqrt(21)) where F denotes the cumulative standard normal, which is about 13.8%.

CB

If I understan you corectly F((65-70)/sqrt(21)) = F(1.09108..)? And then look it up in the Normal table witch is 0.8621 or 0.8643 I'm not quite sure.
And then take 1-0.8621 and you get 0.1379?
Is that how you do it?

You do not have to include F((0-70)/sqrt(21)) ?
Since it is < 65? so like F((65-70)/sqrt(21)) -F((0-70)/sqrt(21))?
 
isa said:
If I understan you corectly F((65-70)/sqrt(21)) = F(1.09108..)? And then look it up in the Normal table witch is 0.8621 or 0.8643 I'm not quite sure.
And then take 1-0.8621 and you get 0.1379?
Is that how you do it?

You do not have to include F((0-70)/sqrt(21)) ?
Since it is < 65? so like F((65-70)/sqrt(21)) -F((0-70)/sqrt(21))?

More or less, but a continuity correction may be appropriate:

The continuity corrections would give F( (65.5-70)/sqrt(21) ) ~= 0.163

CB
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 14 ·
Replies
14
Views
6K