What is Distribution: Definition and 1000 Discussions

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution

f
(
x
;

x

0

,
γ
)

{\displaystyle f(x;x_{0},\gamma )}
is the distribution of the x-intercept of a ray issuing from

(

x

0

,
γ
)

{\displaystyle (x_{0},\gamma )}
with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.
The Cauchy distribution is often used in statistics as the canonical example of a "pathological" distribution since both its expected value and its variance are undefined (but see § Explanation of undefined moments below). The Cauchy distribution does not have finite moments of order greater than or equal to one; only fractional absolute moments exist. The Cauchy distribution has no moment generating function.
In mathematics, it is closely related to the Poisson kernel, which is the fundamental solution for the Laplace equation in the upper half-plane.
It is one of the few distributions that is stable and has a probability density function that can be expressed analytically, the others being the normal distribution and the Lévy distribution.

View More On Wikipedia.org
1. How electricity distributers achieve equal phase loads?

How electric distributers achieve equal phases load, is this done by itself? Unequal situation hapend only in failure ? That depend on load, not source, but they cant control load.. so how?
2. I Calculating the inverse of a function involving the error function

I have a probability distribution over the interval ##[0, \infty)## given by $$f(x) = \frac{x^2}{2\sqrt{\pi} a^3} \exp\left(- \frac{x^2}{4a^2} \right)$$From this I want to derive a formula for the inverse cumulative density function, ##F^{-1}##. The cumulative density function is a slightly...
3. Poisson process is identical on equal intervals?

Let ##N_t## be the Poisson point process with the probability of the random variable ##N_t## being equal to ##x## is given by $$\frac{(\lambda t)^xe^{-\lambda t}}{x!}.$$ ##N_t## has stationary and independent increments, so for any ##\alpha\geq 0, t\geq 0,## the distribution of ##X_t =...
4. Is a Distribution Function a Ratio of Differentials?

I read on a post here titled 'Understanding Fourier Transform for Wavefunction Representation in K Space' that if one represents the squared-amplitude as a ratio of differentials, the solution is given. Letting the squared-amplitude be ##\phi##. $$\frac{d\phi}{dp}=\frac{d\phi}{dk}\frac{dk}{dp}$$...
5. How Can You Draw from a PDF in Python Without the CDF?

Some python function f(x) defines an (unnormalised) pdf between x_min and x_max and say we want to draw x randomly from this distribution if we had the CDF F(x) and its inverse F^{-1}(x), we could take values y uniformly in [0,1], and then our random values of x would be x = F^{-1}(y). but...
6. News Plot of Parton distribution function

Hello I plotted the Parton distribution functions in Mathematica. Now I want to compare the graphs drawn with the graphs of other groups(xu and xd). How should I do this?
7. A Distribution of sum of two circular uniform RVs in the range [0, 2 pi)

Hello, I would like to know the analytical steps of deriving the distribution of sum of two circular (modulo 2 pi) uniform RVs in the range [0, 2 pi). Any help would be useful Thanks in advance!
8. I Write probability in terms of shape parameters of beta distribution

Assume that players A and B play a match where the probability that A will win each point is p, for B its 1-p and a player wins when he reach 11 points by a margin of >= 2The outcome of the match is specified by $$P(y|p, A_{wins})$$ If we know that A wins, his score is specified by B's score; he...
9. Maxwell-Boltzmann Distribution

1. ##\vec{p}=m\vec{v}## ##H=\frac{\vec{p}^2}{2m}+V=\frac{1}{2}m\vec{v}^2## ##z=\frac{1}{(2\pi \hbar)^3}\int d^3\vec{q}d^3\vec{p}e^{-\beta H(\vec{p},\vec{q})}## ##z=\frac{Vm^3}{(2\pi \hbar)^3}\int d^3 \vec{v}e^{-\beta \frac{mv^2}{2}}## ##z=\frac{Vm^3}{(2\pi \frac{h}{2\pi})^3}\int d^3...
10. I Is there a Boltzmann distribution for a system with continuous energy?

Hi. I'm not sure where to put this question, thermodynamics or the quantum physics forum (or somewhere else). For a system in equillibrium with a heat bath at temperature T, the Boltzman distribution can be used. We have the probability of finding the system in state n is given by ##p_n =...

Consider the infrared led TSAL7600 which has the following properties: $$\Phi = 35 mW$$ $$I_e = 25 mW/sr$$ The half angle is ## 30^\circ ## and: $$I_r(\theta) = cos^{4.818}(\theta)$$ is a good approximation for the relative radiant intensity. However, finding the actual radiant...
12. I Free particle probability distribution

Abstract: If a laser shoots photons at a pinhole with a screen behind it, we get a circular non-interference pattern on the screen. Is this distribution Guassian, and if not, what would its wave function be? ===================== Assume a double-slit like experiment, but instead of double...
13. MCNP FMESH for Plotting power distribution

Hello I'm trying to use FMESH command to get power distribution of this core geometry. I want to use xyz coordinate in a 1/12 slice of a core so I could use the output of the MCNP sim for a CFD input How should I approach this? Thank you
14. I Geometric Distribution Problem Clarification

(Geometric). The probability of being seriously injured in a car crash in an unspecified location is about .1% per hour. A driver is required to traverse this area for 1200 hours in the course of a year. What is the probability that the driver will be seriously injured during the course of the...
15. Exploring Periodic Distribution of Rigid Balls in a Vast Space

First of all, all the physical quantities presented in this topic are unknown variables, and I require a functional relationship between these unknown variables. In a vast space that does not consider gravity , there are many ideal rigid balls moving freely. And in equilibrium. The ball is...
16. I Casella Berger: Why is distribution of F-statistic in ANOVA not T^2

Theorem 11.2.8 in Casella & Berger defines the ANOVA statistic as a maxima of T^2 statistic as: \sup_{\sum a_i = 0} T_a^2 = \sup_{\sum a_i = 0} \left( \left( S^2_p \sum a_i^2 / n_i \right)^{-1/2} \left( \sum a_i \bar Y_{i \cdot} - \sum a_i \theta_i\right) \right)^2 = \left( S^2_p...
17. Gas in a box with Maxwell-Boltzmann distribution

I have considered two scenarios: 1) A particle that has just collided with the wall at ##z=L## is moving with a velocity ##v_z<0## moving away from the wall. Hence, the probability that this particle has of colliding again is ##0##, so its distribution is also ##0##. 2) A particle moving with...
18. I Grating Resolving Power of Laser Beams with Gaussian Distribution

All resources I’ve found for grating resolving power assume uniform distribution on the grating and produce airy disks. Resolvance is determined by the Rayleigh criterion where the peak of one wavelength is at the minima of the adjacent one. This definition doesn’t seem applicable for Gaussian...
19. B The historical war of currents in Mains Power Distribution: AC vs DC

So, if I get it right, the basic argument goes like this: AC was preferred to DC because its voltage can be stepped up by a transformer. This limits losses while the current is transported from the production plant to the final user. The voltage is subsequently stepped down when delivered to the...
20. I Local dark matter distribution

We do not seem to have any unexplained orbital/gravitational anomalies within the solar system. What does that imply for the local dark matter distribution?
21. Derive an expression for the radial charge distribution of an E field

I know we're supposed to attempt a solution but I'm honestly super confused here. I think the second an third terms of the del equation can be cancelled out because there is only an E field in the r hat direction, so no e field in the theta and phi directions. That leaves us with ##\nabla \cdot...
22. B Shape & Dimensions of Containers: Impact on the Maxwell Boltzmann Distribution

1.Does the Maxwell Boltzmann distribution change depending on the shape of the container? Pressure and the volume is constant. How is the Distribution affected whether the gas is in: a,sphere b,cube c,cuboid? Why does/doesn’t the distribution change depending on the shape of the container...
23. Step down transformers used in residential AC Mains distribution

Hello, If we have a pole top mounted distribution step down transformer for residential use what happens to the voltage on the secondary side if the primary side voltage increase? Thank you
24. B Sigma Multiplied Gaussian Distribution

Hi! Say i have two variables that have independent gaussian distributions of probability of being a certain value when i sample them, what is the likely hood that both will land on a 3 sigma value simultaneously? Is there an equation that easily determines that? Also for other combinations like...
25. I Is the Boltzmann energy distribution an instance of energy diffusion?

I (mechanical engineer) have researched this question but can't get to an answer. The equilibrium condition for confined particle diffusion of a solute in a solvent is reached when the solute spatial density is uniform (= zero density gradient), and entropy is max. But per Boltzmann, when...
26. B Uniform charge distribution in a conductor

How and why can charge be evenly or uniformly distributed in a conductor? How can such near perfect configuration of charge be achieved? Is outside influence (or force) or any special scientific tools or instruments required to accomplish that? By definition, electrostatic equilibrium is...
27. I Prove that the tail of this distribution goes to zero

Theorem: Let ## X ## be a random variable. Then ## \lim_{s \to \infty} P( |X| \geq s ) =0 ## Proof from teacher assistant's notes: We'll show first that ## \lim_{s \to \infty} P( X \geq s ) =0 ## and ## \lim_{s \to \infty} P( X \leq -s ) =0 ##: Let ## (s_n)_{n=1}^\infty ## be a...
28. Understanding the concept of Probability distribution

Consider the attachment below; How did they arrive at ##F_X (u) = \dfrac{u-a}{b-a}## ? I think there is a mistake on the inequality, probably its supposed to be ##a≤u<b## and that will mean; $$F_X (u) =\dfrac{1}{b-a} \int_a^u du= \dfrac{1}{b-a} ⋅(u-a)$$ as required. Your thoughts...then i...
29. A Finding the Mode of a continous distribution

Attached is my reference on the literature. My question is; ' are there cases where we may have a continuous distribution that has no Mode value? or is it that the Mode will always be there due to the reason that any given function will have a maximum at some point. Cheers.
30. A The Probability Distribution of a Bosonic Field when Emitted

If a bosonic field is probabalistic, and if it can be emitted (suddenly coming into existence), what determines its probability distribution when it is emitted from a fermion? In other words, one thinks (or at least I think) of a fermion field as already being in existence and already having...

47. Understanding Part (b) of a Charge Distribution Problem

I understand part (a) of this question, and my answer for that part is: *For r < a* E = (ρ0 * r4) / (6 * ε0 * a3) * For r ≥ a* E = (ρ0 * a3) / (6 * ε0 * r2) Now, for part (b), I understand one solution is, for r < a, find the work done to bring a point charge q from infinity to a and then from...
48. I Distribution of Sum of Two Weird Random Variables....

Hi there. Let's say I have the following relationship: x = a + b*z + c*y z is distributed normally y is distributed according to a different distribution, say exponential Is there a way to figure out what is the distribution of x? Thanks!
49. MHB Sampling Distribution of the Sample Means from an Infinite Population

1. Individual students’ scores on a national test have a normal distribution with a mean of 18.5 and a standard deviation of 7.8. At a Trade School, 84 students took the test. If the scores at this school have the same distribution as national scores, what is the mean, standard deviation and...
50. Engineering How to calculate the power distribution through this gearbox?

Greeting! My problem is to understand the flux of power inside this gearbox for example I can´t understand why the power in load 2 and load 1 are not equal to the power of the motor (suppose 100% efficiency). if this gearbox was an energy circuit (how to know that the energy is transmitted and...