How to solve this boundary value problem-Method of separation of variables

Click For Summary
SUMMARY

The forum discussion focuses on solving boundary value problems using the method of separation of variables. The first problem involves the Laplace equation \(u_{xx}+u_{yy}=0\) with specified boundary conditions, leading to eigenvalue problems for \(X(x)\) and \(Y(y)\). The second problem presents a similar setup but with different boundary conditions, resulting in the eigenvalues \(\lambda_n=n^2 \pi^2\) and eigenfunctions \(X_n(x)=\sin{(n \pi x)}\). The final solution derived is \(u(x,y)=\frac{1}{2 \sinh{(2 \pi})} \sinh{(2 \pi x)} \sin{(2 \pi y)}\), which satisfies all boundary conditions.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with the method of separation of variables
  • Knowledge of eigenvalues and eigenfunctions in the context of boundary value problems
  • Basic proficiency in solving Laplace's equation
NEXT STEPS
  • Study the method of separation of variables in more depth
  • Learn about eigenvalue problems and Sturm-Liouville theory
  • Explore applications of Laplace's equation in physics and engineering
  • Investigate numerical methods for solving boundary value problems
USEFUL FOR

Mathematicians, physicists, and engineering students who are dealing with boundary value problems and seeking to apply the method of separation of variables effectively.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have a question.. (Wasntme)

When we have the following boundary value problem:
$$u_{xx}+u_{yy}=0, 0<x<a, 0<y<b (1)$$
$$u_x(0,y)=u_x(a,y)=0, 0<y<b$$
$$u(x,0)=x, u_y(x,b)=0, 0<x<a$$using the method of separation of variables, the solution would be of the form $u(x,y)=X(x) \cdot Y(y)$
$$(1) \Rightarrow X''Y+XY''=0 \Rightarrow \frac{X''}{X}+\frac{Y''}{Y}=0 \Rightarrow \frac{X''}{X}=- \frac{Y''}{Y}=- \lambda$$

So we have the following problems:
$$\left.\begin{matrix}
X''+\lambda X=0, 0<x<a\\
X'(0)=X'(a)=0
\end{matrix}\right\}(2)$$

and

$$\left.\begin{matrix}
Y''-\lambda Y=0, 0<y<b\\
Y'(b)=0
\end{matrix}\right\}(3)$$

$$u(x,0)=X(x)Y(0)=x$$

So solving the problem $(2)$ we get the eigenvalues and the corresponding eigenfunctions.
If we have the following boundary value problem:
$$u_{xx}+u_{yy}=0, 0<x<1, 0<y<1 (1')$$
$$u(0,y)=0, u(1,y)= \sin{(\pi y)} \cos{(\pi y)}, 0<y<1$$
$$u(x,0)=u(x,1)=0, 0<x<1$$

using the method of separation of variables, the solution would be of the form $u(x,y)=X(x) \cdot Y(y)$
$$(1') \Rightarrow X''Y+XY''=0 \Rightarrow \frac{X''}{X}+\frac{Y''}{Y}=0 \Rightarrow \frac{X''}{X}=- \frac{Y''}{Y}= \lambda$$

So we have the following problems:
$$\left.\begin{matrix}
X''-\lambda X=0, 0<x<1\\
X(0)=0
\end{matrix}\right\}(2')$$

and

$$\left.\begin{matrix}
Y''+\lambda Y=0, 0<y<1\\
Y(0)=Y(1)=0
\end{matrix}\right\}(3')$$

$$u(1,y)=X(1)Y(y)= \sin{(\pi y)} \cos{(\pi y)}$$

So do we have to solve in this case the problem $(3')$ to find the eigenvalues nd the corresponding eigenfunctions?
Or did I have to set $\frac{X''}{X}=- \frac{Y''}{Y}=- \lambda$ instead of $\frac{X''}{X}=- \frac{Y''}{Y}= \lambda$, as at the other boundary value problem? (Wondering)
 
Physics news on Phys.org
Or could we solve this problem as followed? (Wondering)

$$u(x,y)=v(x,y)+s(x)$$

$$v_{xx}+v_{yy}+s''(x)=0, 0<x<1, 0<y<1$$
$$v(0,y)+s(0)=0, 0<y<1$$
$$v(1,y)+s(1)=\sin{( \pi y)} \cos{( \pi y)}, 0<y<1$$
$$v(x,0)+s(x)=v(x,1)+s(x)=0, 0<x<1$$

So we have the following problems:

$$s''(x)=0, 0<x<1$$
$$s(0)=0, s(1)= \sin{( \pi y)} \cos{( \pi y)}$$

$$v_{xx}+v_{yy}=0, 0<x<1, 0<y<1$$
$$v(0,y)=0, v(1,y)=0, 0<y<1$$
$$v(x,0)=v(x,1)=-s(x), 0<x<1$$
 
Last edited by a moderator:
mathmari said:
Or could we solve this problem as followed? (Wondering)

$$u(x,y)=v(x,y)+s(x)$$

$$v_{xx}+v_{yy}+s''(x)=0, 0<x<1, 0<y<1$$
$$v(0,y)+s(0)=0, 0<y<1$$
$$v(1,y)+s(1)=\sin{( \pi y)} \cos{( \pi y)}, 0<y<1$$
$$v(x,0)+s(x)=v(x,1)+s(x)=0, 0<x<1$$

So we have the following problems:

$$s''(x)=0, 0<x<1$$
$$s(0)=0, s(1)= \sin{( \pi y)} \cos{( \pi y)}$$

$$v_{xx}+v_{yy}=0, 0<x<1, 0<y<1$$
$$v(0,y)=0, v(1,y)=0, 0<y<1$$
$$v(x,0)=v(x,1)=-s(x), 0<x<1$$

The solution of the problem $$s''(x)=0, 0<x<1$$
$$s(0)=0, s(1)= \sin{( \pi y)} \cos{( \pi y)}$$
is $s(x)=\sin{( \pi y)} \cos{( \pi y)} x$, isn't it? (Wondering)To solve the problem $$v_{xx}+v_{yy}=0, 0<x<1, 0<y<1$$
$$v(0,y)=0, 0<y<1$$
$$v(1,y)=0, 0<y<1$$
$$v(x,0)=v(x,1)=-s(x), 0<x<1$$
we use the method of separation of variables, the solution is of the form $v(x,y)=X(x)Y(y)$

So we become the following two problems:

$$\left.\begin{matrix}
X''+ \lambda X=0, 0<x<1\\
X(0)=X(1)=0
\end{matrix}\right\}(*)$$

$$\left.\begin{matrix}
Y''- \lambda Y=0, 0<x<1\\
Y(0)=Y(1)=-s(x)=-\sin{( \pi y)} \cos{( \pi y)} x
\end{matrix}\right\}(**)$$

Right? (Wondering)

From the problem $(*)$ we get that the eigenvalues are $\lambda_n=n^2 \pi^2$ and the corresponding eigenfunctions are $X_n(x)=\sin{(n \pi x)}$.

From the problem $(**)$, we get $Y(y)=c_n e^{-n \pi y}+d_n e^{n \pi y}$, don't we?

$Y(0)=-s(x) \Rightarrow c_n+d_n=-\sin{( \pi y)} \cos{( \pi y)} x$
Is this relation correct? Can we set at the left part $y=0$ and the right part of the relation there is still the variable $y$? (Wondering)
 
Last edited by a moderator:
Erm... this seems to be quite a work in progress... (Sweating)

You seem to know what you're doing! (Nod)

Or do you still have questions? (Wondering)
 
I like Serena said:
Erm... this seems to be quite a work in progress... (Sweating)

You seem to know what you're doing! (Nod)

Or do you still have questions? (Wondering)

I finally used the first way I mentioned at my first post, I mean using the method of separation of variables ($u(x,y)=X(x)Y(y)$) and found that $Y_n(y)=\sin{(n \pi y)}$ and $X_n(x)=A_n \sinh{(n \pi x)}$. So the solution is $$u(x,y)=\sum_{n=1}^{\infty}{A_n \sinh{(n \pi x)}\sin{(n \pi y)}}$$
Then using the conditions the final solution is $$u(x,y)=\frac{1}{2 \sinh{(2 \pi})} \sinh{(2 \pi x)} \sin{(2 \pi y)}$$ which satisfies the conditions! (Sun)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K