MHB How would you show this summation is greater than 24 without induction?

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
On another site, a user asked for help showing:

$\displaystyle \sum_{k=0}^{2499} \frac{1}{\sqrt{4k+1}+\sqrt{4k+3}}>24$

The first respondent asked if the OP was familiar with mathematical induction. The reply was that induction was the topic of the next chapter in her course.

Another suggested rationalizing the denominator to write:

$\displaystyle \frac{1}{2}\sum_{k=0}^{2499} \left(\sqrt{4k+3}-\sqrt{4k+1} \right)>24$

and then wished the OP good luck. She then asked for further help. She also asked for a proof by induction, which I provided as follows:

If I were going to use induction, I would state the hypothesis:

$\displaystyle \frac{1}{2}\sum_{k=0}^n\left(\sqrt{4k+3}-\sqrt{4k+1} \right)>\frac{1}{2}\sqrt{n+1}-1$

or equivalently:

$\displaystyle \sum_{k=0}^n\left(\sqrt{4k+3}-\sqrt{4k+1} \right)>\sqrt{n+1}-2$ where $\displaystyle n\in\mathbb{N}_0$

base case $\displaystyle P_0$:

$\displaystyle \sum_{k=0}^0\left(\sqrt{4k+3}-\sqrt{4k+1} \right)>\sqrt{0+1}-2$

$\displaystyle \sqrt{3}-\sqrt{1}>1-2$ true.

Consider:

$\displaystyle 6n+9=2\left(3n+\frac{9}{2} \right)$

$\displaystyle 6n+9=2\left(2(2n+3)-\frac{2n+3}{2} \right)$

$\displaystyle 6n+9=2\left(\sqrt{4(2n+3)^2}-\sqrt{\frac{(2n+3)^2}{4}} \right)$

$\displaystyle 6n+9>2\left(\sqrt{4(2n+3)^2-1}-\sqrt{\frac{(2n+3)^2+4n+3}{4}} \right)$

$\displaystyle 6n+9>2\left(\sqrt{(4n+5)(4n+7)}-\sqrt{(n+1)(n+3)} \right)$

$\displaystyle 8n+12-2\sqrt{(4n+5)(4n+7)}>2n+3-2\sqrt{(n+1)(n+3)}$

$\displaystyle (4n+7)-2\sqrt{(4n+5)(4n+7)}+(4n+5)>(n+2)-2\sqrt{(n+1)(n+3)}+(n+1)$

$\displaystyle (\sqrt{4n+7}-\sqrt{4n+5})^2>(\sqrt{n+2}-\sqrt{n+1})^2$

$\displaystyle \sqrt{4n+7}-\sqrt{4n+5}>\sqrt{n+2}-\sqrt{n+1}$

$\displaystyle \sqrt{4(n+1)+3}-\sqrt{4(n+1)+1}>\sqrt{(n+1)+1}-\sqrt{n+1}$

Now, adding this to the hypothesis, we have:

$\displaystyle \sum_{k=0}^n\left(\sqrt{4k+3}-\sqrt{4k+1} \right)+\sqrt{4(n+1)+3}-\sqrt{4(n+1)+1}>\sqrt{n+1}-2+\sqrt{(n+1)+1}-\sqrt{n+1}$

$\displaystyle \sum_{k=0}^{n+1}\left(\sqrt{4k+3}-\sqrt{4k+1} \right)>\sqrt{(n+1)+1}-2$

$\displaystyle \frac{1}{2}\sum_{k=0}^{n+1}\left(\sqrt{4k+3}-\sqrt{4k+1} \right)>\frac{1}{2}\sqrt{(n+1)+1}-1$

We have derived $\displaystyle P_{n+1}$ from $\displaystyle P_n$, thereby completing the proof by induction, and we may now state:

$\displaystyle \frac{1}{2}\sum_{k=0}^{2499}\left(\sqrt{4k+3}-\sqrt{4k+1} \right)>\frac{1}{2}\sqrt{2500}-1=24$

Another person replied with a technique using integration, which I am sure will be of little use to the OP.

I am just curious if there is a way to demonstrate the inequality is true by purely algebraic means. This is just for my own curiosity, and I will not post anyone's work there.
 
Mathematics news on Phys.org
MarkFL said:
On another site, a user asked for help showing:

$\displaystyle \sum_{k=0}^{2499} \frac{1}{\sqrt{4k+1}+\sqrt{4k+3}}>24$

The first respondent asked if the OP was familiar with mathematical induction. The reply was that induction was the topic of the next chapter in her course.

Another suggested rationalizing the denominator to write:

$\displaystyle \frac{1}{2}\sum_{k=0}^{2499} \left(\sqrt{4k+3}-\sqrt{4k+1} \right)>24$
My starting point is the inequality $$\sqrt x > \tfrac12\bigl(\sqrt{x+\alpha}+\sqrt{x-\alpha}\bigr)\qquad (0<\alpha < x)\qquad(*).$$ Geometrically, this is an obvious consequence of the fact that the graph of the square root function is convex downwards, as in this picture:

[graph]jcs7w6tdh4[/graph]​

To verify (*) algebraically, square both sides so that it becomes $x > \frac14\bigl(2x +2\sqrt{x^2-\alpha^2}\bigr)$. This simplifies to $x>\sqrt{x^2-\alpha^2}$ which is obviously true.

Next, check that (*) can be written in the equivalent form $\sqrt x - \sqrt{x-\alpha} >\tfrac12\bigl(\sqrt{x+\alpha}-\sqrt {x-\alpha}\bigr).$ Now put $x=k+\frac34$ and $\alpha=\frac12$, to get $\sqrt{k+\frac34} - \sqrt{k+\frac14} >\tfrac12\bigl(\sqrt{k+\frac54}-\sqrt {k+\frac14}\bigr).$

Therefore $$\sum_{k=0}^{2499} \frac{1}{\sqrt{4k+1}+\sqrt{4k+3}} = \frac{1}{2}\sum_{k=0}^{2499} \left(\sqrt{4k+3}-\sqrt{4k+1} \right) = \sum_{k=0}^{2499} \left(\sqrt{k+\tfrac34}-\sqrt{k+\tfrac14} \right) > \frac{1}{2}\sum_{k=0}^{2499} \left(\sqrt{k+\tfrac54}-\sqrt{k+\tfrac14} \right).$$ That is a telescoping sum which collapses to $\frac12\Bigl(\sqrt{2500\tfrac14} - \sqrt{\tfrac14}\Bigr) > \frac12\bigl(50 - \tfrac12\bigr) = 24.75.$
 
MarkFL said:
If I were going to use induction, I would state the hypothesis:

$\displaystyle \frac{1}{2}\sum_{k=0}^n\left(\sqrt{4k+3}-\sqrt{4k+1} \right)>\frac{1}{2}\sqrt{n+1}-1$
How did you get the RHS?
 
I noticed the partial sums of the LHS followed the curve $\displaystyle y=\frac{1}{2}\sqrt{x}$ very closely, so I wrote 24 in that form.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top