MHB Hp1357's question at Yahoo Answers regarding an extended product rule

AI Thread Summary
The discussion centers on applying the product rule in calculus to derive the derivative of a product of multiple functions. The product rule is demonstrated through a step-by-step induction proof, showing how to extend the rule from two functions to n functions. The specific problem involves finding the derivative of the function f(x) defined as the product of terms (1+kx) for k from 1 to n. The final result for f'(0) is calculated as the sum of the first n integers, leading to the formula f'(0) = n(n+1)/2. This comprehensive approach illustrates both the application of the product rule and the solution to the posed calculus problem.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

The Product Rule, Calculus Help?

This is a problem from my calculus textbooks:

Determine an expression for f'(x) is f(x)=g1(x)g2(x)g3(x)...gn-1(x), gn(x). If f(x)=(1+x)(1+2x)(1+3x)...(1+nx) find f'(0).

I have posted a link there to this thread so that the OP may view my work.
 
Mathematics news on Phys.org
Hello hp1357,

a) The product rule for a composite function that is the product of two functions is well-known and will be the basis for working this problem (and accepted without proof):

$$\frac{d}{dx}\left(g_1(x)\cdot g_2(x) \right)=g_1'(x)\cdot g_2(x)+g_1(x)\cdot g_2'(x)$$

Using this rule, let's look at:

$$\frac{d}{dx}\left(g_1(x)\cdot g_2(x)\cdot g_3(x) \right)$$

Now, let's associate two of the functions together, it doesn't matter which two, so let's use the first two:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)$$

Now, using the product rule above, we may state:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)=\frac{d}{dx}\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x)+\left(g_1(x)\cdot g_2(x) \right)\cdot g_3'(x)$$

Using the product rule again, we find:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)=\left(g_1'(x)\cdot g_2(x)+g_1(x)\cdot g_2'(x) \right)\cdot g_3(x)+\left(g_1(x)\cdot g_2(x) \right)\cdot g_3'(x)$$

And distributing, we find:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)=g_1'(x)\cdot g_2(x)\cdot g_3(x)+g_1(x)\cdot g_2'(x)\cdot g_3(x)+g_1(x)\cdot g_2(x)\cdot g_3'(x)$$

Now, this is enough to suggest the pattern (our induction hypothesis $P_n$):

$$\frac{d}{dx}\left[\prod_{k=1}^n\left(g_k(x) \right) \right]=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^n\left(g_j(x) \right) \right]$$

Next, consider:

$$\frac{d}{dx}\left[\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}(x) \right]$$

Using the product rule, and incorporating the new factor into the product. we may state:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\frac{d}{dx}\left[\prod_{k=1}^n\left(g_k(x) \right) \right]\cdot g_{n+1}(x)+\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}'(x)$$

Using our induction hypothesis, this becomes:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^n\left(g_j(x) \right) \right]\cdot g_{n+1}(x)+\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}'(x)$$

Now, incorporating the factor at the end of the first term on the right, we have:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^{n+1}\left(g_j(x) \right) \right]+\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}'(x)$$

And finally incorporating the second term on the right within the first summation term, we have:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\sum_{k=1}^{n+1}\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^{n+1}\left(g_j(x) \right) \right]$$

We have derived $P_{n+1}$ from $P_n$, thereby completing the proof by induction.

b) Now, if:

$$f(x)=\prod_{k=1}^n\left(g_k(x) \right)$$

and

$$g_k(x)=(1+kx)$$, we see that we have:

$$f'(x)=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(1+jx \right)\cdot k\cdot\prod_{j=k+1}^n\left(1+jx \right) \right]$$

Hence:

$$f'(0)=\sum_{k=1}^n(k)=\frac{n(n+1)}{2}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top