MHB Hp1357's question at Yahoo Answers regarding an extended product rule

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

The Product Rule, Calculus Help?

This is a problem from my calculus textbooks:

Determine an expression for f'(x) is f(x)=g1(x)g2(x)g3(x)...gn-1(x), gn(x). If f(x)=(1+x)(1+2x)(1+3x)...(1+nx) find f'(0).

I have posted a link there to this thread so that the OP may view my work.
 
Mathematics news on Phys.org
Hello hp1357,

a) The product rule for a composite function that is the product of two functions is well-known and will be the basis for working this problem (and accepted without proof):

$$\frac{d}{dx}\left(g_1(x)\cdot g_2(x) \right)=g_1'(x)\cdot g_2(x)+g_1(x)\cdot g_2'(x)$$

Using this rule, let's look at:

$$\frac{d}{dx}\left(g_1(x)\cdot g_2(x)\cdot g_3(x) \right)$$

Now, let's associate two of the functions together, it doesn't matter which two, so let's use the first two:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)$$

Now, using the product rule above, we may state:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)=\frac{d}{dx}\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x)+\left(g_1(x)\cdot g_2(x) \right)\cdot g_3'(x)$$

Using the product rule again, we find:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)=\left(g_1'(x)\cdot g_2(x)+g_1(x)\cdot g_2'(x) \right)\cdot g_3(x)+\left(g_1(x)\cdot g_2(x) \right)\cdot g_3'(x)$$

And distributing, we find:

$$\frac{d}{dx}\left(\left(g_1(x)\cdot g_2(x) \right)\cdot g_3(x) \right)=g_1'(x)\cdot g_2(x)\cdot g_3(x)+g_1(x)\cdot g_2'(x)\cdot g_3(x)+g_1(x)\cdot g_2(x)\cdot g_3'(x)$$

Now, this is enough to suggest the pattern (our induction hypothesis $P_n$):

$$\frac{d}{dx}\left[\prod_{k=1}^n\left(g_k(x) \right) \right]=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^n\left(g_j(x) \right) \right]$$

Next, consider:

$$\frac{d}{dx}\left[\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}(x) \right]$$

Using the product rule, and incorporating the new factor into the product. we may state:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\frac{d}{dx}\left[\prod_{k=1}^n\left(g_k(x) \right) \right]\cdot g_{n+1}(x)+\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}'(x)$$

Using our induction hypothesis, this becomes:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^n\left(g_j(x) \right) \right]\cdot g_{n+1}(x)+\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}'(x)$$

Now, incorporating the factor at the end of the first term on the right, we have:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^{n+1}\left(g_j(x) \right) \right]+\prod_{k=1}^n\left(g_k(x) \right)\cdot g_{n+1}'(x)$$

And finally incorporating the second term on the right within the first summation term, we have:

$$\frac{d}{dx}\left[\prod_{k=1}^{n+1}\left(g_k(x) \right) \right]=\sum_{k=1}^{n+1}\left[\prod_{j=1}^{k-1}\left(g_j(x) \right)\cdot\frac{d}{dx}\left(g_k(x) \right)\cdot\prod_{j=k+1}^{n+1}\left(g_j(x) \right) \right]$$

We have derived $P_{n+1}$ from $P_n$, thereby completing the proof by induction.

b) Now, if:

$$f(x)=\prod_{k=1}^n\left(g_k(x) \right)$$

and

$$g_k(x)=(1+kx)$$, we see that we have:

$$f'(x)=\sum_{k=1}^n\left[\prod_{j=1}^{k-1}\left(1+jx \right)\cdot k\cdot\prod_{j=k+1}^n\left(1+jx \right) \right]$$

Hence:

$$f'(0)=\sum_{k=1}^n(k)=\frac{n(n+1)}{2}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top