MHB I have no answers for these questions... me

  • Thread starter Thread starter boujeemath
  • Start date Start date
AI Thread Summary
The discussion focuses on solving geometry problems from a Cambridge book, specifically finding equations of lines based on given intercepts and midpoints. For question 22, the midpoint M(4,3) leads to the x-intercept of (8,0) and y-intercept of (0,6), resulting in the line equation y - 0 = (3/4)(x - 8). In question 23, the midpoint (-1,2) is used to derive the line equation with a gradient m, ultimately finding m=2 and the line equation y=2x+4. The calculations confirm that the derived intercepts align with the midpoint condition.
boujeemath
Messages
1
Reaction score
0
I'm working on my geometry during winter break and I'm solving questions from the cambridge book but they don't have worked soutions :((

Screen Shot 2020-07-06 at 12.09.59 pm.png
 
Mathematics news on Phys.org
Hi boujeemath, welcome to MHB!

For question 22, we can let the $y$-intercept be $(0,\,a)$ and $x$-intercept be $(b,\,0)$. Since we are told $M(4,\,3)$ is the midpoint of the intercepts, we have

$\left(\dfrac{b}{2},\,\dfrac{a}{2}\right)= (4,\,3)$

That gives us $b=8$ and $a=6$.

Now, you have found the intercepts, can you proceed to find the equation of the line?
 
To follow up, once we have the $x$- and $y$ intercepts, we know the gradient, $m=-\dfrac{y\text{-intercept}}{x\text{-intercept}}=-\dfrac{6}{8}=-\dfrac{3}{4}$.

Therefore, taking $m=-\dfrac{3}{4}$ and the point $(8,\,0)$, we find that the point=gradient form of the straight line is:

$y-0=\dfrac{3}{4}\left(x-8\right)$
 
Problem 23 asks you to, first, write the general equation for a line through the point (-1, 2) with gradient m. I don't know what form you have learned as the general equation for a line through (a, b) with gradient m. One is \frac{y- b}{x- a}= m. Another is y- b= m(x- a) which you can get by multiplying both sides of the first by x- a. Here a= -1 and b= 2. so y- 2= m(x+ 1) or y= m(x+1)+ 2 or y= mx+ m+ 2..

The problem then asks you to find the equation of the specific line when (-1, 2) is "the midpoint of the intercepts with the x and y axes". y- 2= m(x+ 1) "intercepts" the y-axis where x= 0. That is y- 2= m(1) so y= m+ 2. The y-intercept is (0, m+2). It intercepts the x- axis where y= m(x+ 1)+ 2= 0. m(x+ 1)= -2. x+1= -2/m, x= -1- 2/m. The x-intercept is (-1-2/m, 0). The midpoint is (-1/2-1/m, m/2+ 1). You want -1/2- 1/m= -1 and m/2+ 1= 2. Of course, that is asking for one value to satisfy two differential equations. In general we cannot do that but from m/2+ 1= 2 we have m/2= 1 and then m= 2. Putting that into -1/2- 1/m= -1 we get -1/2- 1/2= -1 which is a true statement! The line we want is y= 2(x+ 1)+ 2= 2x+ 4.

ChecK: The line y= 2x+ 4 has x-intercept (0, 4) and y-intercept (-2, 0). The midpoint is ((-2+ 0/2, (4+ 0)/2)= (-1, 2).
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
3
Views
1K
Replies
7
Views
1K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
Back
Top