I have no answers for these questions... me

  • Context: MHB 
  • Thread starter Thread starter boujeemath
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around solving geometry problems from a Cambridge textbook, specifically focusing on finding equations of lines given certain conditions, such as intercepts and midpoints. The scope includes mathematical reasoning and problem-solving techniques related to geometry.

Discussion Character

  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • One participant describes their struggle with geometry problems from a textbook that lacks worked solutions.
  • Another participant proposes a method to find the intercepts of a line given a midpoint, leading to specific values for the intercepts.
  • A follow-up post calculates the gradient of the line based on the intercepts found, providing a point-gradient form of the line's equation.
  • Further, a participant discusses writing the general equation of a line through a specific point with a given gradient and explores the implications of the midpoint condition for intercepts, ultimately deriving a specific line equation.
  • There is a verification step where the derived line's intercepts are checked against the midpoint condition, confirming the calculations align with the problem's requirements.

Areas of Agreement / Disagreement

Participants appear to engage collaboratively in solving the problems, with no explicit disagreements noted. However, the complexity of the conditions and the nature of the problems suggest that multiple approaches may exist without a consensus on a single method.

Contextual Notes

The discussion includes various forms of line equations and their derivations, with some assumptions about the conditions under which the midpoint and intercepts are defined. There may be unresolved steps in the reasoning process, particularly regarding the generalization of the midpoint condition.

boujeemath
Messages
1
Reaction score
0
I'm working on my geometry during winter break and I'm solving questions from the cambridge book but they don't have worked soutions :((

Screen Shot 2020-07-06 at 12.09.59 pm.png
 
Mathematics news on Phys.org
Hi boujeemath, welcome to MHB!

For question 22, we can let the $y$-intercept be $(0,\,a)$ and $x$-intercept be $(b,\,0)$. Since we are told $M(4,\,3)$ is the midpoint of the intercepts, we have

$\left(\dfrac{b}{2},\,\dfrac{a}{2}\right)= (4,\,3)$

That gives us $b=8$ and $a=6$.

Now, you have found the intercepts, can you proceed to find the equation of the line?
 
To follow up, once we have the $x$- and $y$ intercepts, we know the gradient, $m=-\dfrac{y\text{-intercept}}{x\text{-intercept}}=-\dfrac{6}{8}=-\dfrac{3}{4}$.

Therefore, taking $m=-\dfrac{3}{4}$ and the point $(8,\,0)$, we find that the point=gradient form of the straight line is:

$y-0=\dfrac{3}{4}\left(x-8\right)$
 
Problem 23 asks you to, first, write the general equation for a line through the point (-1, 2) with gradient m. I don't know what form you have learned as the general equation for a line through (a, b) with gradient m. One is \frac{y- b}{x- a}= m. Another is y- b= m(x- a) which you can get by multiplying both sides of the first by x- a. Here a= -1 and b= 2. so y- 2= m(x+ 1) or y= m(x+1)+ 2 or y= mx+ m+ 2..

The problem then asks you to find the equation of the specific line when (-1, 2) is "the midpoint of the intercepts with the x and y axes". y- 2= m(x+ 1) "intercepts" the y-axis where x= 0. That is y- 2= m(1) so y= m+ 2. The y-intercept is (0, m+2). It intercepts the x- axis where y= m(x+ 1)+ 2= 0. m(x+ 1)= -2. x+1= -2/m, x= -1- 2/m. The x-intercept is (-1-2/m, 0). The midpoint is (-1/2-1/m, m/2+ 1). You want -1/2- 1/m= -1 and m/2+ 1= 2. Of course, that is asking for one value to satisfy two differential equations. In general we cannot do that but from m/2+ 1= 2 we have m/2= 1 and then m= 2. Putting that into -1/2- 1/m= -1 we get -1/2- 1/2= -1 which is a true statement! The line we want is y= 2(x+ 1)+ 2= 2x+ 4.

ChecK: The line y= 2x+ 4 has x-intercept (0, 4) and y-intercept (-2, 0). The midpoint is ((-2+ 0/2, (4+ 0)/2)= (-1, 2).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K