Are there any useful identities for simplifying an expression of the form:(adsbygoogle = window.adsbygoogle || []).push({});

$$((\ldots((x_{1} *_{1} x_{2}) *_{2} x_{3}) \ldots) *_{n - 1} x_{n})$$

Where each $$*_{i}$$ is one of $$\cap, \cup$$ and $$x_1 \ldots x_n$$ are sets?

I believe I found two; though I haven't proved them, I think they make sense:

$$((\ldots((x_{1} \cup x_{2}) *_{2} x_{3}) \ldots) \cup x_{1}) \equiv ((\ldots(x_{2} *_{2} x_{3}) \ldots) \cup x_{1})$$

$$((\ldots((x_{1} \cap x_{2}) *_{2} x_{3}) \ldots) \cap x_{1}) \equiv ((\ldots(x_{2} *_{2} x_{3}) \ldots) \cap x_{1})$$

Generally, how would you prove these? Just induction?

I tested a few expressions with the attached perl script which is why I think they work.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Identities of nested set algebraic expressions

**Physics Forums | Science Articles, Homework Help, Discussion**