If a sequence converges, then all subsequences of it have same limit

Click For Summary
SUMMARY

The discussion centers on the proof that if a sequence \( (s_n) \) converges to a limit \( s \), then all its subsequences also converge to the same limit \( s \). The proof relies on the definition of convergence, where for any \( \epsilon > 0 \), there exists an \( N \) such that for all \( k > N \), \( |s_k - s| < \epsilon \). Participants debated the clarity of the proof, with some expressing concerns that it resembles a "language game" rather than a logical argument. The importance of tying subsequences back to the original sequence was emphasized, as well as the flexibility in defining subsequences.

PREREQUISITES
  • Understanding of limits in sequences, specifically the definition of convergence.
  • Familiarity with the concept of subsequences in mathematical analysis.
  • Knowledge of epsilon-delta definitions in calculus.
  • Basic mathematical proof techniques and logical reasoning.
NEXT STEPS
  • Study the formal definition of convergence in sequences and its implications.
  • Explore the properties of subsequences and their relationship to convergence.
  • Learn about epsilon-delta proofs and their application in real analysis.
  • Investigate advanced topics in sequences, such as Cauchy sequences and their convergence properties.
USEFUL FOR

Mathematics students, educators, and anyone interested in deepening their understanding of convergence and subsequences in real analysis.

Hall
Messages
351
Reaction score
87
Let's say we're given a sequence ##(s_n)## such that ##\lim s_n = s##. We have to prove that all subsequences of it converges to the same limit ##s##. Here is the standard proof:


Given ##\epsilon \gt 0## there exists an ##N## such that
$$
k \gt N \implies |s_k - s| \lt \varepsilon$$
Consider any subsequence ##(s_{n_{k}})##. Since ##n_k \geq k##, therefore ## k \gt N \implies n_k \gt N##. Hence,
$$
k \gt N \implies |s_{n_{k}} - s| \lt \varepsilon$$
So, we can write ## \lim s_{n_{k}} = s##.

But it seems to me that this proof is more of a consequence of the language than logic, I know the idea of this proof is logical: if all the terms after a certain point gets nearer and nearer to a point, then no matter how many finite terms we delete, the higher terms will still be near to that same point (because subsequence also contains infinite terms, and eventually the higher terms will get to ##s## only); but this rigorous proof seems merely to be language game.

If we write the subsequences as ##t_n## (and not as ##s_{n_k}##), then how we would proceed to show ##\lim t_n = s##?
 
Physics news on Phys.org
We know for each ##n##, ##t_n=s_k## with ##k\geq n##. So if you pick ##N## such that ##s_k## is close to s for ##k\geq N##, then ##t_n## must be close as well if ##n\geq N##
 
  • Like
Likes   Reactions: Hall
Office_Shredder said:
We know for each ##n##, ##t_n=s_k## with ##k\geq n##. So if you pick ##N## such that ##s_k## is close to s for ##k\geq N##, then ##t_n## must be close as well if ##n\geq N##
I had the same thing in mind. Here is how I planned to do it:

Given ##\lim s_n = s##, means that for any given ##\varepsilon \gt 0##, there exits ##N## such that ##n \gt N \implies |s_n - s| \lt \varepsilon##.

Definition of subsequence: If in a sequence we delete off a finite number of terms, then the remaining terms, after being ordered, are said to be forming a subsequence.

In the sequence ##(s_n)## we can do the cancellation as follows:
$$
\bcancel{s_1}, s_2, s_3, \bcancel{s_4}, \cdots \bcancel{s_N}, \bcancel{s_{N+1}}, s_{N+2}, \bcancel{s_{N+3}}, \cdots$$
##t_1 = s_2##, ##t_2 = s_3##, ##\cdots##, ##t_N = s_{N+2}##, ##\cdots##. All the terms ##t_n##, for ##n \gt N##, corresponds to terms ##s_n## for ##n \gt N## and which are within epsilon of ##s##. Therefore, for the sequence ##(t_n)##, ##n \gt N \implies |t_n -s| \lt \varepsilon##. Hence, ##\lim t_n =s##.
 
Hall said:
If we write the subsequences as ##t_n## (and not as ##s_{n_k}##), then how we would proceed to show ##\lim t_n = s##?
You must tie it back to the original ##s_n## sequence or you have nothing. Why would you want to remove the reference to the fact that it is a subsequence? That is the most important fact.
 
FactChecker said:
You must tie it back to the original ##s_n## sequence or you have nothing. Why would you want to remove the reference to the fact that it is a subsequence? That is the most important fact.
Can you please check the facts of the proof I have presented in post #3?
 
Hall said:
Can you please check the facts of the proof I have presented in post #3?
Your definition of subsequence is wrong. You can remove an infinite number and still have an infinite number remaining for a subsequence. Other than that, you immediately tie the ##t_i## sequence back to the ##s_j## sequence, so I don't think that it has any significant difference from the original proof.

I don't mean to criticize. It is good for you to think about such things.
 
  • Like
Likes   Reactions: Hall
FactChecker said:
Your definition of subsequence is wrong. You can remove an infinite number and still have an infinite number remaining for a subsequence.
I think I took "some" for "finite' in this definition (given in wikipedia)
In mathematics, a subsequence of a given sequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the order of the remaining elements
FactChecker said:
Other than that, you immediately tie the ti sequence back to the sj sequence, so I don't think that it has any significant difference from the original proof.
Yes. My problem with the standard proof was that it seemed more like a language game, we exploited that ##k## quite commercially.
 
Hall said:
I think I took "some" for "finite' in this definition (given in wikipedia)
Yes, that was wrong. "some" can be infinite.
Hall said:
Yes. My problem with the standard proof was that it seemed more like a language game, we exploited that ##k## quite commercially.
It's sort of a simple proof, probably to get you used to proving things. But it is an important fact. Simple proofs can seem like a "language game", but you should just tolerate that. There will be much more difficult proofs in the future.
 
  • Like
Likes   Reactions: Hall

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
5K
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K