If the inverse image of the image of a set via some function is equal....

Click For Summary

Homework Help Overview

The discussion revolves around the properties of a function defined from set A to set B, specifically examining the implications of the inverse image of the image of a set. The function in question is defined as f(x) = x^2, with A being the interval (-1, 1) and B being the interval [0, 1). Participants are exploring the conditions under which the equality f^{-1}(f(X)) = X holds for subsets of A and its implications for the injectivity of the function.

Discussion Character

  • Conceptual clarification, Assumption checking, Mixed

Approaches and Questions Raised

  • Participants discuss whether the statement f^{-1}(f(X)) = X must hold for all subsets X of A to conclude that f is injective. Some provide counterexamples to challenge this assumption, while others attempt to clarify the implications of the statement.

Discussion Status

The discussion is active, with participants providing various interpretations of the original statement and exploring the conditions under which it holds. Some have offered guidance on how to approach proving the injectivity of the function, while others are questioning the validity of counterexamples based on different interpretations of the statement.

Contextual Notes

There is an ongoing debate about the interpretation of the statement regarding the equality of the inverse image and the image of a set, particularly whether it applies universally to all subsets of A or only to specific cases. This has led to confusion and differing opinions on the implications for the function's injectivity.

Eclair_de_XII
Messages
1,082
Reaction score
91
Homework Statement
to the set, is the function injective? Let ##f## be a function. Denote the domain ##A## and the target space ##B##. Let ##X\subset A##. If ##f^{-1}(f(X))=X##, then is ##f## injective?
Relevant Equations
##f(X)=\{f(x):x\in X\}##
##f^{-1}(f(X))=\{x\in A:f(x)\in f(X)\}##

Injective: If ##f## is ##\textbf{injective}##, then given any two points ##y_1,y_2\in f(X)##, the pre-images of these points must be equal.
##A=(-1,1)##
##B=[0,1)##
Define ##f:A\longrightarrow B## by ##f(x)=x^2##

Set ##X=A##.

##f(X)=\{f(x):x\in X\}=\{x^2:x\in(-1,1)\}=B##
##f^{-1}(f(X))=\{x\in A:f(x)\in f(X)\}=\{x\in (-1,1):x^2\in B\}=X##

Now choose a non-zero point ##y\in f(X)##. There are two pre-images of this point: ##x,-x\in (-1,1)##. This implies that ##f## is not injective even though the inverse image of the image of ##X## via ##f## is equal to ##X##.
 
Last edited:
  • Like
Likes   Reactions: sysprog and Delta2
Physics news on Phys.org
It depends how exactly is the statement meant.

If it is meant for every ##X\subset A,f^{-1}(f(X))=X## then yes we can conclude from this that ##f## is injective.

However if the statement is meant as that exists one ##X\subset A## such that... then we can't conclude from this that ##f## is injective and that is what your counterexample proves.
 
  • Like
Likes   Reactions: sysprog
Delta2 said:
If it is meant for every ##X\subset A,f^{-1}(f(X))=X## then yes we can conclude from this that ##f## is injective.
The statement to be proven can be formally stated as follows:

"Let ##f:A\longrightarrow B##. Then for all ##X\subset A##, if ##f^{-1}(f(X))=X##, then ##f## is injective."

I made an attempt to prove the negation using a counter-example.

Even more formally stated:

"For every function ##f## that maps a set ##A## to another set ##B##, for every subset ##X## contained in ##A##, if ##f^{-1}(f(X))=X##, then ##f## is injective."
 
  • Like
Likes   Reactions: sysprog
This statement is true, it uses the for every (or for all) sentence which makes the difference.

Just consider as ##X=\{x\}## where x a random element of A. Then you can prove that for every ##x\in A## the preimage of ##f(x)## contains only one element, ##x##, therefore ##f## is injective.
 
  • Like
Likes   Reactions: sysprog
To give you a better hint, you can prove that $$f(x_1)=f(x_2)\Rightarrow x_1=x_2$$ holds by considering the sets ##X_1=\{x_1\},X_2=\{x_2\}## and using that $$f(X_1)=f(X_2)\Rightarrow f^{-1}(f(X_1))=f^{-1}(f(X_2))$$ that is if two sets are equal, then their preimages are equal too.
 
  • Like
Likes   Reactions: sysprog
Delta2 said:
This statement is true, it uses the for every (or for all) sentence which makes the difference.

Just consider as ##X=\{x\}## where x a random element of A. Then you can prove that for every ##x\in A## the preimage of ##f(x)## contains only one element, ##x##, therefore ##f## is injective.
I don't understand. You say that I must prove that the statement holds for all ##X\subset A##, yet you prove it by explaining that it holds for a specific subset of ##A##.
 
Eclair_de_XII said:
I don't understand. You say that I must prove that the statement holds for all ##X\subset A##, yet you prove it by explaining that it holds for a specific subset of ##A##.
Nevermind my post #4 it is not well stated. Look at post #5. It is given that ##f^{-1}(f(X))=X## holds for every ##X\subset A##.
Since it holds for every subset X it holds for ##X_1=\{x_1\}## and ##X_2=\{x_2\}##. Then just proceed as post #5 says.
 
Let's say I proved this right. Would that make my counter-example wrong?
 
Eclair_de_XII said:
Let's say I proved this right. Would that make my counter-example wrong?
The validity of your counter example depends on the statement of the problem. If the statement was "if there exists a ##X\subset A## such that ##f^{-1}(f(X))=X## then f is injective"" then your counter example is right. But the statement is "if for all ##X\subset A##..." which makes your counter example wrong.
 
  • Like
Likes   Reactions: Eclair_de_XII
  • #10
if we take ##f(x)=x^2## then the premise of the statement that is for all ##X\subset A,f^{-1}(f(X))=X## simply doesn't hold, it holds only for some X, not for every X.
 
  • #11
Thank you so much for the clarification. I very much appreciate you pointing out the oversight I had made in interpreting the statement I was meant to prove. I hope not to make such oversights again in proving theorems in the future.
 
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K