Im back with change subject of formula

  • Context: MHB 
  • Thread starter Thread starter fordy2707
  • Start date Start date
  • Tags Tags
    Change Formula
Click For Summary

Discussion Overview

The discussion revolves around rearranging a formula to make a variable, L, the subject. Participants explore the steps involved in manipulating the equation and express uncertainty about their approach. The context includes mathematical reasoning and problem-solving related to formula manipulation.

Discussion Character

  • Mathematical reasoning
  • Homework-related
  • Technical explanation

Main Points Raised

  • One participant presents a formula involving f, L, and C, and expresses confusion about correctly rearranging it to isolate L.
  • Another participant points out a mistake in the notation, suggesting that $2\pi$ should be treated as a single value squared, rather than separating it.
  • A later reply emphasizes the importance of applying the same operations to both sides of the equation to maintain equality, illustrating this with a step-by-step approach.
  • Participants discuss the simplification of fractions and the process of taking inverses to isolate L.

Areas of Agreement / Disagreement

Participants generally agree on the steps needed to rearrange the formula, but there is some uncertainty about the initial manipulation and notation. The discussion reflects a mix of correct and incorrect approaches without a clear consensus on the best method.

Contextual Notes

There are unresolved issues regarding the correct notation and the initial steps taken to rearrange the formula. Some assumptions about the manipulation of fractions and the treatment of constants may also be unclear.

fordy2707
Messages
24
Reaction score
0
so I've been taught basic rearranging of formula which I've found easy now I am given questions which are obviously a lot harder and I've entered the mind black hole if you could point me in the right direction with this where I go wrong

make L the subject

$f=\frac{1}{2\pi}$ $\sqrt{\frac{1}{LC}}$

=${f}^{2}=\frac{1}{{2\pi}^{2}}\frac{1}{LC}$

=${f}^{2}=\frac{1}{{2\pi}^{2}LC}$

above I may have already gone wrong but in my head its ok,but here on I am quite unsure if I am allowed to move the formula as I have

=${2\pi}^{2}C{f}^{2}=\frac{1}{L}$ ?? is that correct ?

then I am at a total loss as what to do with that fraction left over in my guess I am wanting make a new fraction and throw the 1 under the rest to make

L=$\frac{{2\pi}^{2}C{F}^{2}}{1}$ but this is just guess territory now as I've not been shown this type of question
 
Mathematics news on Phys.org
fordy2707 said:
so I've been taught basic rearranging of formula which I've found easy now I am given questions which are obviously a lot harder and I've entered the mind black hole if you could point me in the right direction with this where I go wrong

make L the subject

$f=\frac{1}{2\pi}$ $\sqrt{\frac{1}{LC}}$

=${f}^{2}=\frac{1}{{2\pi}^{2}}\frac{1}{LC}$

=${f}^{2}=\frac{1}{{2\pi}^{2}LC}$

above I may have already gone wrong but in my head its ok,but here on I am quite unsure if I am allowed to move the formula as I have

=${2\pi}^{2}C{f}^{2}=\frac{1}{L}$ ?? is that correct ?

then I am at a total loss as what to do with that fraction left over in my guess I am wanting make a new fraction and throw the 1 under the rest to make

L=$\frac{{2\pi}^{2}C{F}^{2}}{1}$ but this is just guess territory now as I've not been shown this type of question
There are 2 mistakes ( one is because of latex)
There are
1) ${f}^{2}=\frac{1}{(2\pi)^{2}LC}$ you should put $2\pi$ in () and not in $\{\}$ because $2\pi$ should get squared
2) $L=\frac{1}{(2\pi)^{2}C{f}^{2}}$
 
I see, so i treated $2\pi$ as 1 value where its actually 2 different values to be multiplied together .

thanks for your help,im happy with how close I got.i will write your advice into my learning material and should be able to do a sum like that on my own next time
 
The "trick" is, when in doubt, to apply basic operations to the left and to the right of the equal sign.
That is, multiply left and right by the same expression:

$$f^2=\frac 1{(2\pi)^2LC} \\
\Rightarrow f^2 \cdot (2\pi)^2C =\frac 1{(2\pi)^2LC} \cdot (2\pi)^2C$$

After that we can simplify the fraction by canceling common factors:
$$\Rightarrow f^2 \cdot (2\pi)^2C =\frac 1{\cancel{(2\pi)^2}L\cancel C} \cdot \cancel{(2\pi)^2}\cancel C \\
\Rightarrow(2\pi)^2f^2C =\frac 1{L}$$

Now we take the inverse $\frac 1 x$ left and right, to get:
$$\Rightarrow \frac{1}{(2\pi)^2f^2C} = L \\
\Rightarrow L = \frac{1}{(2\pi)^2f^2C}
$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
922
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K