MHB Im back with change subject of formula

  • Thread starter Thread starter fordy2707
  • Start date Start date
  • Tags Tags
    Change Formula
Click For Summary
SUMMARY

The discussion focuses on rearranging the formula for frequency, specifically the equation \( f = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \). The user initially misapplies the formula, leading to incorrect expressions for \( L \). The correct rearrangement is \( L = \frac{1}{(2\pi)^2 f^2 C} \), achieved by applying basic algebraic operations consistently on both sides of the equation. Key mistakes included improper handling of the squaring of \( 2\pi \) and misunderstanding the treatment of constants in the formula.

PREREQUISITES
  • Understanding of algebraic manipulation
  • Familiarity with the concept of frequency in physics
  • Knowledge of square roots and squaring terms
  • Basic understanding of fractions and their simplification
NEXT STEPS
  • Study algebraic manipulation techniques for rearranging formulas
  • Learn about the physical significance of frequency and its relationship with inductance and capacitance
  • Practice problems involving rearranging equations in physics
  • Explore the use of LaTeX for clear mathematical expression formatting
USEFUL FOR

Students learning physics, particularly those studying electrical circuits, as well as educators looking to enhance their teaching methods in algebraic formula manipulation.

fordy2707
Messages
24
Reaction score
0
so I've been taught basic rearranging of formula which I've found easy now I am given questions which are obviously a lot harder and I've entered the mind black hole if you could point me in the right direction with this where I go wrong

make L the subject

$f=\frac{1}{2\pi}$ $\sqrt{\frac{1}{LC}}$

=${f}^{2}=\frac{1}{{2\pi}^{2}}\frac{1}{LC}$

=${f}^{2}=\frac{1}{{2\pi}^{2}LC}$

above I may have already gone wrong but in my head its ok,but here on I am quite unsure if I am allowed to move the formula as I have

=${2\pi}^{2}C{f}^{2}=\frac{1}{L}$ ?? is that correct ?

then I am at a total loss as what to do with that fraction left over in my guess I am wanting make a new fraction and throw the 1 under the rest to make

L=$\frac{{2\pi}^{2}C{F}^{2}}{1}$ but this is just guess territory now as I've not been shown this type of question
 
Mathematics news on Phys.org
fordy2707 said:
so I've been taught basic rearranging of formula which I've found easy now I am given questions which are obviously a lot harder and I've entered the mind black hole if you could point me in the right direction with this where I go wrong

make L the subject

$f=\frac{1}{2\pi}$ $\sqrt{\frac{1}{LC}}$

=${f}^{2}=\frac{1}{{2\pi}^{2}}\frac{1}{LC}$

=${f}^{2}=\frac{1}{{2\pi}^{2}LC}$

above I may have already gone wrong but in my head its ok,but here on I am quite unsure if I am allowed to move the formula as I have

=${2\pi}^{2}C{f}^{2}=\frac{1}{L}$ ?? is that correct ?

then I am at a total loss as what to do with that fraction left over in my guess I am wanting make a new fraction and throw the 1 under the rest to make

L=$\frac{{2\pi}^{2}C{F}^{2}}{1}$ but this is just guess territory now as I've not been shown this type of question
There are 2 mistakes ( one is because of latex)
There are
1) ${f}^{2}=\frac{1}{(2\pi)^{2}LC}$ you should put $2\pi$ in () and not in $\{\}$ because $2\pi$ should get squared
2) $L=\frac{1}{(2\pi)^{2}C{f}^{2}}$
 
I see, so i treated $2\pi$ as 1 value where its actually 2 different values to be multiplied together .

thanks for your help,im happy with how close I got.i will write your advice into my learning material and should be able to do a sum like that on my own next time
 
The "trick" is, when in doubt, to apply basic operations to the left and to the right of the equal sign.
That is, multiply left and right by the same expression:

$$f^2=\frac 1{(2\pi)^2LC} \\
\Rightarrow f^2 \cdot (2\pi)^2C =\frac 1{(2\pi)^2LC} \cdot (2\pi)^2C$$

After that we can simplify the fraction by canceling common factors:
$$\Rightarrow f^2 \cdot (2\pi)^2C =\frac 1{\cancel{(2\pi)^2}L\cancel C} \cdot \cancel{(2\pi)^2}\cancel C \\
\Rightarrow(2\pi)^2f^2C =\frac 1{L}$$

Now we take the inverse $\frac 1 x$ left and right, to get:
$$\Rightarrow \frac{1}{(2\pi)^2f^2C} = L \\
\Rightarrow L = \frac{1}{(2\pi)^2f^2C}
$$
 

Similar threads

Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K