In how many floors does the elevator have to stop?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Elevator
Click For Summary

Discussion Overview

The discussion revolves around a probability problem involving an elevator in a high-rise building with ten floors. Participants explore how to calculate the expected number of floors the elevator must stop at to let off one or more passengers, given that twelve people independently choose a floor uniformly from the ten available floors.

Discussion Character

  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant defines random variables for each floor to represent whether at least one person gets off at that floor.
  • Another participant confirms the probability that nobody gets off at a specific floor is \((\frac{9}{10})^{12}\), based on independent choices by the passengers.
  • Participants discuss the formula for calculating the expected number of stops at each floor, suggesting that it involves the outcomes of either stopping or not stopping at that floor.
  • There is an inquiry about how to derive the expected number of stops for a specific floor, with references to the general formula for expectation.

Areas of Agreement / Disagreement

Participants generally agree on the probability calculations and the approach to determining the expected number of stops, but there are requests for clarification on the derivation of certain formulas, indicating some uncertainty in understanding.

Contextual Notes

Some participants express uncertainty about the application of the expectation formula and how it specifically relates to the problem at hand, suggesting that further clarification may be needed.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following:
In a high-rise building with ten floors above the ground floor an elevator is installed. Suppose that twelve people enter the elevator on the ground floor and independently select one of the ten floors under uniform distribution. In how many floors does the elevator have to stop on average to let off one or more people?
I have done the following:

Let $i\in \{1, \ldots , 10\}$.

Let $X_i$ be a random variable that takes the value $1$ if at least one person gets off on floor $i$ and $0$ otherwise.

Then we get $X_i=\left\{\begin{matrix}
1, & \text{ stops on floor } i\\
0, & \text{ otherwise }
\end{matrix}\right.$ We want to calculate the expectation of the number of stops, right?

The probability that nobody gets out on floor $i$ is equal to
\begin{align*}P&(\text{Nobody gets out on floor } i ) \\ & =P\left ((\text{Person } 1 \text{ doesn't get out}) \cap (\text{Person } 2 \text{ doesn't get out}) \cap \ldots \cap (\text{Person } 12 \text{ doesn't get out})\right ) \\ & = P\left (\cap_{j=1}^{12}(\text{Person } j \text{ doesn't get out})\right )\end{align*}

SInce each person chooses the floor to get out independently from the others, it holds that
\begin{equation*}P\left (\cap_{j=1}^{12}(\text{Person } j \text{ doesn't get out})\right )=\prod_{j=1}^{12} P(\text{Person } j \text{ doesn't get out})\end{equation*}

The probability that a person gets out on floor $i$ is equal to $\frac{1}{10}$. The probability that the person doesn't get out on floor $i$ is equal to $1-\frac{1}{10}=\frac{9}{10}$.

We get the following:
\begin{equation*}\prod_{j=1}^{12} P(\text{Person } j \text{ doesn't get out})=\prod_{j=1}^{12}\frac{9}{10}=\left (\frac{9}{10}\right )^{12} \end{equation*} Is everything correct so far? (Wondering) Which is the formula for the expectation that we have to use? Do we maybe have to use the formula $E(X)=\sum_{k=1}^{10}x_k\cdot P(X=x_k)$ ? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari! (Smile)

I believe that is correct yes.

So we have:
$$P(\text{elevator does not stop at floor }i) = \left (\frac{9}{10}\right )^{12}$$
Either the elevator stops or not at floor $i$, so the expected number of stops on floor $i$ is:
$$E(\text{nr of stops on floor }i) = 0 \cdot \left (\frac{9}{10}\right )^{12} + 1 \cdot \left(1 - \left (\frac{9}{10}\right )^{12}\right)$$
Thus the expected total number of stops is:
$$E(\text{nr of stops}) = \sum_{i=1}^{10}E(\text{nr of stops on floor }i) = 10 \cdot \left(1 - \left (\frac{9}{10}\right )^{12}\right)$$
(Thinking)
 
I like Serena said:
Either the elevator stops or not at floor $i$, so the expected number of stops on floor $i$ is:
$$E(\text{nr of stops on floor }i) = 0 \cdot \left (\frac{9}{10}\right )^{12} + 1 \cdot \left(1 - \left (\frac{9}{10}\right )^{12}\right)$$

Could you explain to me how we get that? (Wondering)
 
mathmari said:
Could you explain to me how we get that? (Wondering)

Generally the expectation of a random variable X is:
$$EX=\sum x_k P(x_k)$$
where the $x_k$ represent the possible outcomes.

In our case the possible outcomes for a specific floor i are 0 stops and 1 stop. (Thinking)
 
I like Serena said:
Generally the expectation of a random variable X is:
$$EX=\sum x_k P(x_k)$$
where the $x_k$ represent the possible outcomes.

In our case the possible outcomes for a specific floor i are 0 stops and 1 stop. (Thinking)
I understand! Thank you very much! (Mmm)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K