MHB Indicial Notation 2: Proving $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Notation
Click For Summary
The discussion focuses on proving that the expression $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$. It is established through the use of indicial notation and the properties of the Levi-Civita symbol, where the antisymmetry of the cross product and the symmetry of the dot product lead to cancellation. Specifically, the terms involving $a_i a_j$ are symmetric, while the antisymmetric nature of the Levi-Civita symbol results in a sum that equals zero. Consequently, the conclusion is reached that $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$ holds true. This proof highlights the interplay between symmetric and antisymmetric properties in vector calculus.
Dustinsfl
Messages
2,217
Reaction score
5
Trying to show that $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$.
\begin{alignat}{3}
\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} & = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot(a_1\hat{\mathbf{e}}_i + a_2\hat{\mathbf{e}}_j+a_3\hat{\mathbf{e}}_k)\\
& = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_1\hat{\mathbf{e}}_i + \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_2\hat{\mathbf{e}}_j + \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_3\hat{\mathbf{e}}_k\\
& = & \varepsilon_{ijk}a_jb_ka_1(\hat{\mathbf{e}}_i\cdot\hat{\mathbf{e}}_i) + \varepsilon_{ijk}a_jb_ka_2(\hat{\mathbf{e}}_i\cdot \hat{\mathbf{e}}_j) + \varepsilon_{ijk}a_jb_ka_3(\hat{\mathbf{e}}_i\cdot \hat{\mathbf{e}}_k)\\
& = & \varepsilon_{ijk}a_jb_ka_1
\end{alignat}
Why is this last term 0?
 
Physics news on Phys.org
dwsmith said:
Trying to show that $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$.
\begin{alignat}{3}
\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} & = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot(a_1\hat{\mathbf{e}}_i + a_2\hat{\mathbf{e}}_j+a_3\hat{\mathbf{e}}_k)\\
& = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_i\hat{\mathbf{e}}_i
Again, a small error.

\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{a} = \epsilon_{ijk}a_jb_k \hat{\mathbf{e}}_i \cdot a_i \hat{\mathbf{e}}_i

\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{a} = \epsilon _{ijk}a_i a_j b_k

Now, a_i a_j is symmetric in i and j, but we are taking an antisymmetric product (from the epsilon) and summing it over a symmetric expression. This will always be zero. So

\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{a} = 0

-Dan
 
topsquark said:
Now, a_i a_j is symmetric in i and j, but we are taking an antisymmetric product (from the epsilon) and summing it over a symmetric expression. This will always be zero.

I see.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 5 ·
Replies
5
Views
661
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
463
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K