Indicial Notation 2: Proving $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Notation
Click For Summary
SUMMARY

The discussion centers on proving that the expression $\mathbf{a} \times \mathbf{b} \cdot \mathbf{a} = 0$ using indicial notation. The proof utilizes the Levi-Civita symbol $\varepsilon_{ijk}$ and demonstrates that the product of a symmetric tensor $a_i a_j$ and an antisymmetric tensor results in zero. The conclusion is that the expression evaluates to zero due to the inherent properties of symmetry and antisymmetry in tensor operations.

PREREQUISITES
  • Understanding of vector calculus and cross products
  • Familiarity with indicial notation and tensor algebra
  • Knowledge of the Levi-Civita symbol and its properties
  • Basic concepts of symmetry and antisymmetry in mathematical expressions
NEXT STEPS
  • Study the properties of the Levi-Civita symbol in detail
  • Explore tensor algebra applications in physics
  • Learn about symmetric and antisymmetric tensors
  • Investigate further proofs involving vector identities and cross products
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with vector calculus and tensor analysis, particularly those interested in understanding the properties of cross products and their implications in various applications.

Dustinsfl
Messages
2,217
Reaction score
5
Trying to show that $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$.
\begin{alignat}{3}
\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} & = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot(a_1\hat{\mathbf{e}}_i + a_2\hat{\mathbf{e}}_j+a_3\hat{\mathbf{e}}_k)\\
& = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_1\hat{\mathbf{e}}_i + \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_2\hat{\mathbf{e}}_j + \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_3\hat{\mathbf{e}}_k\\
& = & \varepsilon_{ijk}a_jb_ka_1(\hat{\mathbf{e}}_i\cdot\hat{\mathbf{e}}_i) + \varepsilon_{ijk}a_jb_ka_2(\hat{\mathbf{e}}_i\cdot \hat{\mathbf{e}}_j) + \varepsilon_{ijk}a_jb_ka_3(\hat{\mathbf{e}}_i\cdot \hat{\mathbf{e}}_k)\\
& = & \varepsilon_{ijk}a_jb_ka_1
\end{alignat}
Why is this last term 0?
 
Physics news on Phys.org
dwsmith said:
Trying to show that $\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} = 0$.
\begin{alignat}{3}
\mathbf{a}\times\mathbf{b}\cdot\mathbf{a} & = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot(a_1\hat{\mathbf{e}}_i + a_2\hat{\mathbf{e}}_j+a_3\hat{\mathbf{e}}_k)\\
& = & \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\cdot a_i\hat{\mathbf{e}}_i
Again, a small error.

\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{a} = \epsilon_{ijk}a_jb_k \hat{\mathbf{e}}_i \cdot a_i \hat{\mathbf{e}}_i

\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{a} = \epsilon _{ijk}a_i a_j b_k

Now, a_i a_j is symmetric in i and j, but we are taking an antisymmetric product (from the epsilon) and summing it over a symmetric expression. This will always be zero. So

\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{a} = 0

-Dan
 
topsquark said:
Now, a_i a_j is symmetric in i and j, but we are taking an antisymmetric product (from the epsilon) and summing it over a symmetric expression. This will always be zero.

I see.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 5 ·
Replies
5
Views
826
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
593
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K