MHB Induction on the number of equations

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Induction
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $L$ be a differential operator.

We suppose that we have $n$ equations, that means $\phi: \displaystyle{\bigwedge_{j=1}^n L_j x=f_j}$ and we assume that $\phi$ can be written as $Lx=f \land \psi$, where $\psi$ doesn't contain any $x$.

We prove this by induction on the number of equations, $n$.

  • Base case: For $n=1$ we have one equation, so it is of the form $Lx=f$.
  • Inductive hypothesis: We suppose that it holds for $n=k$, i.e., if $\phi$ contains $k$ equations, then we can reduce it into the form $$Lx=f \land \psi \ \ \text{ where } \psi \text{ doesn't contain any } x.$$
  • Inductive step: We will show that it holds for $n=k+1$, i.e., if we have $k+1$ equations we can reduce this system into the form $$Lx=f \land \psi \ \ \text{ where } \psi \text{ doesn't contain any } x.$$
    From the inductive hypothesis we know that we can reduce the first $k$ equations into the above form. So we have two equations that contain $x$ and its derivatives.

Is this correct so far? (Wondering)

How could we continue? (Wondering)
 
Physics news on Phys.org
Is the inductive step as follows? (Wondering) Inductive step: We will show that it holds for $n=k+1$, i.e., if we have $k+1$ equations we can reduce this system into the form $$Lx=f \land \psi \ \ \text{ where } \psi \text{ doesn't contain any } x.$$
From the inductive hypothesis we know that we can reduce the first $k$ equations into the above form. So we have two equations that contain $x$ and its derivatives. We add these two equations and we get a new differential equation $Lx=f$. So the initial system is equivalent to the new differential equation $Lx=f$.
 
Last edited by a moderator:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top