Inequality: $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$ holds true for positive real numbers $a$, $b$, and $c$. This conclusion is derived from applying the AM-GM inequality, which establishes that the arithmetic mean of non-negative numbers is greater than or equal to their geometric mean. The specific case discussed confirms that the left-hand side exceeds the right-hand side under the given conditions.

PREREQUISITES
  • Understanding of the AM-GM inequality
  • Familiarity with polynomial expressions
  • Basic knowledge of real analysis
  • Ability to manipulate algebraic inequalities
NEXT STEPS
  • Study the AM-GM inequality in detail
  • Explore applications of inequalities in real analysis
  • Learn about polynomial inequalities and their proofs
  • Investigate other forms of inequalities, such as Cauchy-Schwarz
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in advanced algebraic inequalities.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
if $a,b,c$ are positive real numbers show that $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$
 
Mathematics news on Phys.org
Can you...hmm...

pretty please, give us some clues?:o
 
anemone said:
Can you...hmm...

pretty please, give us some clues?:o

given up so early

multiply out the LHS
 
kaliprasad said:
given up so early

You might be onto something!:p

But on the level, I have bestowed much thought on this problem...hehehe...
 
kaliprasad said:
if $a,b,c$ are positive real numbers show that $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$

$$(1+a)(1+b)(1+c)=1+a+b+ab+c+ac+bc+abc$$

AM-GM inequality:

$$\dfrac{a+b+c+ab+ac+bc+abc}{7}\ge(abc)^{4/7}$$

$$\Rightarrow a+b+c+ab+ac+bc+abc\ge7(abc)^{4/7}$$

$$\Rightarrow1+a+b+ab+c+ac+bc+abc>7(abc)^{4/7}$$

$$\Rightarrow(1+a)(1+b)(1+c)>7(abc)^{4/7}$$

$$\Rightarrow(1+a)^7(1+b)^7(1+c)^7>7^7a^4b^4c^4$$

$$\text{Q. E. D.}$$
 
greg1313 said:
$$(1+a)(1+b)(1+c)=1+a+b+ab+c+ac+bc+abc$$

AM-GM inequality:

$$\dfrac{a+b+c+ab+ac+bc+abc}{7}\ge(abc)^{4/7}$$

$$\Rightarrow a+b+c+ab+ac+bc+abc\ge7(abc)^{4/7}$$

$$\Rightarrow1+a+b+ab+c+ac+bc+abc>7(abc)^{4/7}$$

$$\Rightarrow(1+a)(1+b)(1+c)>7(abc)^{4/7}$$

$$\Rightarrow(1+a)^7(1+b)^7(1+c)^7>7^7a^4b^4c^4$$

$$\text{Q. E. D.}$$
good answer same as mine.
I hoped that Anemone would solve it particularly after my hint.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
684
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K