Inequality: $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary

Discussion Overview

The discussion revolves around the inequality $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$ for positive real numbers $a$, $b$, and $c$. Participants explore the validity of this inequality, potentially seeking proofs or counterexamples.

Discussion Character

  • Debate/contested

Main Points Raised

  • One participant asserts the inequality needs to be shown for positive real numbers $a$, $b$, and $c$.
  • Several participants express uncertainty or hesitation about the approach to take, indicated by their incomplete thoughts.
  • Another participant suggests that a previous answer aligns with their own, implying a shared perspective but without elaborating on the details.

Areas of Agreement / Disagreement

The discussion appears to have multiple competing views, with some participants expressing uncertainty and others suggesting alignment with previous responses. No consensus is reached on the validity of the inequality or the methods to prove it.

Contextual Notes

Participants have not fully articulated their assumptions or provided detailed mathematical steps, leaving the discussion open-ended and unresolved.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
if $a,b,c$ are positive real numbers show that $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$
 
Mathematics news on Phys.org
Can you...hmm...

pretty please, give us some clues?:o
 
anemone said:
Can you...hmm...

pretty please, give us some clues?:o

given up so early

multiply out the LHS
 
kaliprasad said:
given up so early

You might be onto something!:p

But on the level, I have bestowed much thought on this problem...hehehe...
 
kaliprasad said:
if $a,b,c$ are positive real numbers show that $(1+a)^7(1+b)^7(1+c)^7 > 7^7 a^4b^4c^4$

$$(1+a)(1+b)(1+c)=1+a+b+ab+c+ac+bc+abc$$

AM-GM inequality:

$$\dfrac{a+b+c+ab+ac+bc+abc}{7}\ge(abc)^{4/7}$$

$$\Rightarrow a+b+c+ab+ac+bc+abc\ge7(abc)^{4/7}$$

$$\Rightarrow1+a+b+ab+c+ac+bc+abc>7(abc)^{4/7}$$

$$\Rightarrow(1+a)(1+b)(1+c)>7(abc)^{4/7}$$

$$\Rightarrow(1+a)^7(1+b)^7(1+c)^7>7^7a^4b^4c^4$$

$$\text{Q. E. D.}$$
 
greg1313 said:
$$(1+a)(1+b)(1+c)=1+a+b+ab+c+ac+bc+abc$$

AM-GM inequality:

$$\dfrac{a+b+c+ab+ac+bc+abc}{7}\ge(abc)^{4/7}$$

$$\Rightarrow a+b+c+ab+ac+bc+abc\ge7(abc)^{4/7}$$

$$\Rightarrow1+a+b+ab+c+ac+bc+abc>7(abc)^{4/7}$$

$$\Rightarrow(1+a)(1+b)(1+c)>7(abc)^{4/7}$$

$$\Rightarrow(1+a)^7(1+b)^7(1+c)^7>7^7a^4b^4c^4$$

$$\text{Q. E. D.}$$
good answer same as mine.
I hoped that Anemone would solve it particularly after my hint.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K