MHB Inequality Challenge: Prove $\sum_{1}^{n}$

Click For Summary
The discussion focuses on proving the inequality $\sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$ for natural numbers $n \geq 2$. Participants share their solutions and validate each other's approaches, emphasizing the correctness of the provided answers. The conversation highlights the mathematical reasoning behind the inequality and the steps involved in the proof. Overall, the thread showcases collaborative problem-solving in the context of mathematical inequalities. The participants successfully engage with the challenge, demonstrating a strong understanding of the topic.
Albert1
Messages
1,221
Reaction score
0
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$
 
Mathematics news on Phys.org
Albert said:
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$

My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
 
anemone said:
My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
very good your answer is correct!
 
My solution:

We wish to prove

$$\sum_{i=1}^n\left(\dfrac{1}{2i-1}-\dfrac{1}{2i}\right)\gt\dfrac{2n}{3n+1},\quad n\ge2,\quad n\in\mathbb{N}$$

I claim that

$$\sum_{i=1}^n\dfrac{2}{9i^2-3i-2}=\dfrac{2n}{3n+1}$$

Proof:

$$\dfrac{2}{9(1)^2-3(1)-2}=\dfrac{2(1)}{3(1)+1}=\dfrac12$$
$$\dfrac{2n}{3n+1}-\dfrac{2(n-1)}{3(n-1)+1}=\dfrac{2}{9n^2-3n-2}$$
$$\Rightarrow\dfrac{2n}{3n+1}=\dfrac{2(n-1)}{3(n-1)+1}+\dfrac{2}{9n^2-3n-2}$$

as required.

$$\sum_{i=1}^n\left(\dfrac{1}{4i^2-2i}-\dfrac{2}{9i^2-3i-2}\right)>0\quad\forall\, n>1$$
$$\text{Q.E.D.}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
960
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K