MHB Inequality Challenge: Prove $\sum_{1}^{n}$

Click For Summary
The discussion focuses on proving the inequality $\sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$ for natural numbers $n \geq 2$. Participants share their solutions and validate each other's approaches, emphasizing the correctness of the provided answers. The conversation highlights the mathematical reasoning behind the inequality and the steps involved in the proof. Overall, the thread showcases collaborative problem-solving in the context of mathematical inequalities. The participants successfully engage with the challenge, demonstrating a strong understanding of the topic.
Albert1
Messages
1,221
Reaction score
0
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$
 
Mathematics news on Phys.org
Albert said:
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$

My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
 
anemone said:
My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
very good your answer is correct!
 
My solution:

We wish to prove

$$\sum_{i=1}^n\left(\dfrac{1}{2i-1}-\dfrac{1}{2i}\right)\gt\dfrac{2n}{3n+1},\quad n\ge2,\quad n\in\mathbb{N}$$

I claim that

$$\sum_{i=1}^n\dfrac{2}{9i^2-3i-2}=\dfrac{2n}{3n+1}$$

Proof:

$$\dfrac{2}{9(1)^2-3(1)-2}=\dfrac{2(1)}{3(1)+1}=\dfrac12$$
$$\dfrac{2n}{3n+1}-\dfrac{2(n-1)}{3(n-1)+1}=\dfrac{2}{9n^2-3n-2}$$
$$\Rightarrow\dfrac{2n}{3n+1}=\dfrac{2(n-1)}{3(n-1)+1}+\dfrac{2}{9n^2-3n-2}$$

as required.

$$\sum_{i=1}^n\left(\dfrac{1}{4i^2-2i}-\dfrac{2}{9i^2-3i-2}\right)>0\quad\forall\, n>1$$
$$\text{Q.E.D.}$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
924
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K