Inequality Challenge: Prove $\sum_{1}^{n}$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The forum discussion centers on proving the inequality $\sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$ for natural numbers $n \geq 2$. Participants confirm the correctness of the proposed solution, emphasizing the validity of the mathematical steps taken. The discussion highlights the importance of understanding series and inequalities in mathematical proofs.

PREREQUISITES
  • Understanding of summation notation and series
  • Familiarity with inequalities in mathematics
  • Basic knowledge of limits and convergence
  • Proficiency in manipulating algebraic expressions
NEXT STEPS
  • Study the properties of series and convergence criteria
  • Explore advanced inequality techniques, such as Cauchy-Schwarz inequality
  • Learn about mathematical induction for proving inequalities
  • Investigate related inequalities in number theory and their applications
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in number theory and inequality proofs will benefit from this discussion.

Albert1
Messages
1,221
Reaction score
0
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$
 
Mathematics news on Phys.org
Albert said:
$n\in N,n\geq 2$

prove:

$ \sum_{1}^{n}(\dfrac{1}{2n-1}-\dfrac{1}{2n})>\dfrac {2n}{3n+1}$

My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
 
anemone said:
My solution:

Note that

$$\begin{align*}1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{1}{2n-1}-\frac{1}{2n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}\\&=\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n}\right)\\&=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\small\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\\&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\end{align*}$$

Therefore

$$\begin{align*}\sum_{k=1}^{n}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n}\right)&=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\\&\ge \frac{(\overbrace{1+1+\cdots+1}^{\text{n times}})^2}{n+1+n+2+\cdots+2n}\,\,\text{(by the extended Cauchy-Schwarz inequality)}\\&=\frac{n^2}{\frac{n}{2}\left(n+1+2n\right)}\\&=\frac{2n}{3n+1}\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
very good your answer is correct!
 
My solution:

We wish to prove

$$\sum_{i=1}^n\left(\dfrac{1}{2i-1}-\dfrac{1}{2i}\right)\gt\dfrac{2n}{3n+1},\quad n\ge2,\quad n\in\mathbb{N}$$

I claim that

$$\sum_{i=1}^n\dfrac{2}{9i^2-3i-2}=\dfrac{2n}{3n+1}$$

Proof:

$$\dfrac{2}{9(1)^2-3(1)-2}=\dfrac{2(1)}{3(1)+1}=\dfrac12$$
$$\dfrac{2n}{3n+1}-\dfrac{2(n-1)}{3(n-1)+1}=\dfrac{2}{9n^2-3n-2}$$
$$\Rightarrow\dfrac{2n}{3n+1}=\dfrac{2(n-1)}{3(n-1)+1}+\dfrac{2}{9n^2-3n-2}$$

as required.

$$\sum_{i=1}^n\left(\dfrac{1}{4i^2-2i}-\dfrac{2}{9i^2-3i-2}\right)>0\quad\forall\, n>1$$
$$\text{Q.E.D.}$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
985
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K