Without loss of generality, assume $c$ is the longest side of the triangle. If the triangle is obtuse or right, then $c^2 \ge a^2 + b^2$. So since $z = -x - y$, then $a^2yz + b^2xz + c^2xy = -(a^2y^2 - b^2x^2) + (c - a^2 - b^2)xy.$ Now $a^2y^2 + b^2x^2 \ge 2ab|xy| = [(a + b)^2 - a^2 - b^2]|xy| \ge (c^2 - a^2 - b^2)|xy|,$ where the last step follows from the triangle inequality $a + b > c$. Thus $-(a^2y^2 + b^2x^2) \le -(c^2 - a^2 - b^2)|xy|$, forcing
$$-(a^2y^2 + b^2x^2) + (c^2 - a^2 - b^2)xy \le -(c^2 - a^2 - b^2)|xy| + (c^2 - a^2 - b^2)xy = (c^2 - a^2 - b^2)[-|xy| + xy] \le 0.$$
Now suppose the triangle is acute. Then $c^2 < a^2 + b^2$. Since $c$ is the longest side, we also have $b^2 < a^2 + c^2$, and $a^2 < b^2 + c^2$. We can write
$$xy = \frac{z^2 - x^2 - y^2}{2},\quad yz = \frac{x^2 - y^2 - z^2}{2},\quad \text{and} \quad xz = \frac{y^2 - x^2 - z^2}{2},$$
which are derived from the equations $z^2 = (x + y)^2$, $x^2 = (y + z)^2$, and $y^2 = (x + z)^2$, respectively. Thus
$$a^2yz + b^2xz + c^2xy = -\frac{(b^2 + c^2 - a^2)x^2 + (c^2 + a^2 - b^2)y^2 + (a^2 + b^2 - c^2)z^2}{2} \le 0.\quad \text{QED}$$