MHB Proof of Triangle Inequality for $n$ Natural Numbers

Click For Summary
SUMMARY

The discussion presents a proof of the Triangle Inequality for \( n \) natural numbers, specifically demonstrating that for all \( n \in \mathbb{N} \), the inequality \(\dfrac{|a_1+\ldots+a_n|}{1+|a_1+\ldots+a_n|}\leq\dfrac{|a_1|}{1+|a_1|}+\ldots+\dfrac{|a_n|}{1+|a_n|}\) holds true. The proof utilizes induction and properties of absolute values, confirming that the inequality is valid for any set of positive numbers \( a_1, a_2, \ldots, a_n \). The method involves dividing both sides of the inequality by \( 1 + a_1 + \ldots + a_n \) and substituting the absolute values to achieve the desired result.

PREREQUISITES
  • Understanding of basic algebraic manipulation
  • Familiarity with the concept of absolute values
  • Knowledge of mathematical induction
  • Basic understanding of inequalities
NEXT STEPS
  • Study mathematical induction techniques in depth
  • Explore properties of absolute values in inequalities
  • Learn about advanced inequalities such as Cauchy-Schwarz and Jensen's Inequality
  • Investigate applications of the Triangle Inequality in real analysis
USEFUL FOR

Mathematicians, students studying real analysis, educators teaching algebra, and anyone interested in the foundational principles of inequalities in mathematics.

solakis1
Messages
407
Reaction score
0
Prove for all $n\in N$

$\dfrac{|a_1+...a_n|}{1+|a_1+...+a_n|}\leq\dfrac{|a_1|}{1+|a_1|}+...\dfrac{|a_n|}{1+|a_n|}$
 
Physics news on Phys.org
First step is to prove the inequality when $n=2$ and both the numbers are positive. So we want to show that if $a,b\geqslant0$ then $$\frac{a+b}{1+a+b}\leqslant \frac a{1+a} + \frac b{1+b}.$$ Write that as $$1 - \frac1{1+a+b} \leqslant 1-\frac1{1+a} + 1 - \frac1{1+b},$$ $$ \frac1{1+a} + \frac1{1+b} \leqslant 1 + \frac1{1+a+b} = \frac{2+a+b}{1+a+b}.$$ Multiply out the fractions to get $$(2+a+b)(1+a+b) \leqslant (2+a+b)(1+a+b+ab).$$ That last inequality is clearly true, and all the steps are reversible. Therefore the first inequality is true.

The next step is to prove the given inequality in the case when $a_1,\ldots,a_n$ are all positive. This is done by induction, the base case $n=2$ being covered by Step 1 above. For the inductive step, suppose that $$\frac{a_1 + \ldots + a_{n-1}}{1+a_1 + \ldots + a_{n-1}} \leqslant \frac{a_1}{1+a_1} + \ldots + \frac{a_{n-1}}{1+a_{n-1}},$$ and apply the Step 1 inequality with $a=a_1+\ldots+a_{n-1}$ and $b=a_n$ to get $$\frac{a_1 + \ldots + a_n}{1+a_1 + \ldots + a_n} \leqslant \frac{a_1 + \ldots + a_{n-1}}{1+a_1 + \ldots + a_{n-1}} + \frac{a_n}{1+a_n}.$$ The result then follows from the inductive hypothesis.

Finally, suppose that $a_1,\ldots,a_n$ are arbitrary real (or even complex) numbers. For $x\geqslant0$, the function $\dfrac x{1+x}$ is an increasing function. Since $|a_1+\ldots+a_n| \leqslant |a_1| + \ldots + |a_n|$ it follows that $$\frac{|a_1 + \ldots + a_n|}{1+|a_1 + \ldots + a_n|} \leqslant \frac{|a_1| + \ldots + |a_n|}{1+|a_1| + \ldots + |a_n|}.$$ It then follows from Step 2 applied to the positive numbers $|a_1|,\ldots,|a_n|$ that $$\frac{|a_1 + \ldots + a_n|}{1+|a_1 + \ldots + a_n|} \leqslant \frac{|a_1| + \ldots + |a_n|}{1+|a_1| + \ldots + |a_n|} \leqslant \frac{|a_1|}{1+|a_1|} + \ldots + \frac{|a_n|}{1+|a_n|}.$$
 
Opalg said:
First step is to prove the inequality when $n=2$ and both the numbers are positive. So we want to show that if $a,b\geqslant0$ then $$\frac{a+b}{1+a+b}\leqslant \frac a{1+a} + \frac b{1+b}.$$ Write that as $$1 - \frac1{1+a+b} \leqslant 1-\frac1{1+a} + 1 - \frac1{1+b},$$ $$ \frac1{1+a} + \frac1{1+b} \leqslant 1 + \frac1{1+a+b} = \frac{2+a+b}{1+a+b}.$$ Multiply out the fractions to get $$(2+a+b)(1+a+b) \leqslant (2+a+b)(1+a+b+ab).$$ That last inequality is clearly true, and all the steps are reversible. Therefore the first inequality is true.

The next step is to prove the given inequality in the case when $a_1,\ldots,a_n$ are all positive. This is done by induction, the base case $n=2$ being covered by Step 1 above. For the inductive step, suppose that $$\frac{a_1 + \ldots + a_{n-1}}{1+a_1 + \ldots + a_{n-1}} \leqslant \frac{a_1}{1+a_1} + \ldots + \frac{a_{n-1}}{1+a_{n-1}},$$ and apply the Step 1 inequality with $a=a_1+\ldots+a_{n-1}$ and $b=a_n$ to get $$\frac{a_1 + \ldots + a_n}{1+a_1 + \ldots + a_n} \leqslant \frac{a_1 + \ldots + a_{n-1}}{1+a_1 + \ldots + a_{n-1}} + \frac{a_n}{1+a_n}.$$ The result then follows from the inductive hypothesis.

Finally, suppose that $a_1,\ldots,a_n$ are arbitrary real (or even complex) numbers. For $x\geqslant0$, the function $\dfrac x{1+x}$ is an increasing function. Since $|a_1+\ldots+a_n| \leqslant |a_1| + \ldots + |a_n|$ it follows that $$\frac{|a_1 + \ldots + a_n|}{1+|a_1 + \ldots + a_n|} \leqslant \frac{|a_1| + \ldots + |a_n|}{1+|a_1| + \ldots + |a_n|}.$$ It then follows from Step 2 applied to the positive numbers $|a_1|,\ldots,|a_n|$ that $$\frac{|a_1 + \ldots + a_n|}{1+|a_1 + \ldots + a_n|} \leqslant \frac{|a_1| + \ldots + |a_n|}{1+|a_1| + \ldots + |a_n|} \leqslant \frac{|a_1|}{1+|a_1|} + \ldots + \frac{|a_n|}{1+|a_n|}.$$
[sp]To follow your way We have:

$(a+b)\leq a+b$ Divide both sides by 1+a+b>0 and we have:

$\dfrac{(a+b)}{1+(a+b)}\leq\dfrac{a+b}{1+a+b}\leq\dfrac{a}{1+a}+\dfrac{b}{1+b}$

Now for the induction.

Since $(a_1+.....a_n)\leq a_1+.......a_n)$

Divide both sides by $(1+a_1.......a_n)$ and you have the desired result

Now substitute all the a's with there corresponding absolute value since they are positive and we have the desired inequality which holds for all values of a's[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
776
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K