Infinite dimensional vector space

Click For Summary

Discussion Overview

The discussion revolves around proving that various vector spaces, specifically \( \mathbb{R}^{\infty} \) and certain function spaces, are infinite dimensional. Participants explore different approaches and reasoning related to the definitions and properties of these spaces.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants assert that \( \mathbb{R}^{\infty} \) is infinite dimensional and suggest deriving a contradiction from the assumption that it is finite dimensional.
  • One participant proposes a basis for \( \mathbb{R}^{\infty} \) consisting of the elements \( e_i \), arguing that \( e_{N+1} \) cannot be expressed as a linear combination of the first \( N \) basis elements.
  • Multiple participants mention function spaces \( F(-\infty, \infty) \), \( C(-\infty, \infty) \), \( C^{\infty}(-\infty, \infty) \), and \( C^m(-\infty, \infty) \), suggesting they are also infinite dimensional.
  • One participant requests clarification on the notation and definitions of the function spaces, indicating that \( F(-\infty, \infty) \) is not standard and requires explanation.
  • A later reply discusses constructing a linearly independent set of functions from \( C^{\infty} \) functions with support in the unit interval to demonstrate the infinite dimensionality of the function spaces.

Areas of Agreement / Disagreement

Participants generally agree that \( \mathbb{R}^{\infty} \) and the mentioned function spaces are infinite dimensional, but there is no consensus on the definitions and implications of \( F(-\infty, \infty) \). The discussion includes competing views on the clarity and standardization of notation.

Contextual Notes

There are limitations regarding the definitions of the function spaces, particularly \( F(-\infty, \infty) \), which some participants find unclear. The discussion also reflects varying levels of familiarity with the concepts and notation used.

Swati
Messages
16
Reaction score
0
Prove that \(R^{\infty}\) is infinite dimensional.
 
Last edited by a moderator:
Physics news on Phys.org
Swati said:
Prove that Rinfinity​ is infinite dimeensional.

Please be more specific about what you think \(R^{\infty }\) is?

(Try assuming otherwise and deriving a contradiction)

CB
 
yes it is \(R^{\infty }\)
 
Swati said:
Prove that Rinfinity​ is infinite dimeensional.

Suppose otherwise, that is that \( \mathbb{R}^{\infty}\) is finite dimensional with dimension \(N\)

Now consider \( \{e_1, e_2, ... , e_n, ... \}\) (where \(e_i\) is the element of \( \mathbb{R}^{\infty}\) with a zero in every position except for the \(i\)-th which is 1). Clearly \(\{ e_1, ..,e_N\}\) are linearly independent and therefore form a basis for \( \mathbb{R}^{\infty}\). But \(e_{N+1}\) cannot be written as a linear combination of the \(e_1, ... , e_N\) etc.

CB
 
Last edited:
Prove that \(F({\infty},-{\infty})\), \(C({\infty},-{\infty})\), \(C^{\infty}({\infty},-{\infty})\)
and \(C^m({\infty},-{\infty})\) are infinite dimensional.
 
Last edited by a moderator:
Swati said:
Prove that \(F({\infty},-{\infty})\), \(C({\infty},-{\infty})\), \(C^{\infty}({\infty},-{\infty})\)
and \(C^m({\infty},-{\infty})\) are infinite dimensional.

Please provide context, what are these speces (try using words in addition to notation).

Presumably these are function spaces of some kind is so say so and which they are.

CB
 
Prove that [FONT=MathJax_Math]F[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]∞[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main])
and [FONT=MathJax_Math]C[FONT=MathJax_Math]m[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]) are infinite dimensional vector spaces.
(From Elementary Linear Algebra by Howard Anton)
 
Swati said:
Prove that [FONT=MathJax_Math]F[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]∞[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main])
and [FONT=MathJax_Math]C[FONT=MathJax_Math]m[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]) are infinite dimensional vector spaces.
(From Elementary Linear Algebra by Howard Anton)
You still have not explained what $F(-\infty, \infty)$ means (and as far as I know it is not a standard notation, so you should not expect it to be understood without an explanation).

For the spaces $C(-\infty, \infty)$ and $C^\infty(-\infty, \infty)$, let $f(x)$ be a nonzero $C^\infty$-function with support in the unit interval. For each integer $n$, define $f_n(x) = f(x-n)$. The functions $f_n$ form a linearly independent set and you can apply the Captain's argument in comment #4 above to show that these spaces are infinite-dimensional.

If the function $f$ can be chosen to be in the space $F(-\infty, \infty)$ (whatever that is), then the same approach will work to show that that space is also infinite-dimensional.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 0 ·
Replies
0
Views
8K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K