Swati
- 16
- 0
Prove that \(R^{\infty}\) is infinite dimensional.
Last edited by a moderator:
The discussion revolves around proving that various vector spaces, specifically \( \mathbb{R}^{\infty} \) and certain function spaces, are infinite dimensional. Participants explore different approaches and reasoning related to the definitions and properties of these spaces.
Participants generally agree that \( \mathbb{R}^{\infty} \) and the mentioned function spaces are infinite dimensional, but there is no consensus on the definitions and implications of \( F(-\infty, \infty) \). The discussion includes competing views on the clarity and standardization of notation.
There are limitations regarding the definitions of the function spaces, particularly \( F(-\infty, \infty) \), which some participants find unclear. The discussion also reflects varying levels of familiarity with the concepts and notation used.
Swati said:Prove that Rinfinity is infinite dimeensional.
Swati said:Prove that Rinfinity is infinite dimeensional.
Swati said:Prove that \(F({\infty},-{\infty})\), \(C({\infty},-{\infty})\), \(C^{\infty}({\infty},-{\infty})\)
and \(C^m({\infty},-{\infty})\) are infinite dimensional.
You still have not explained what $F(-\infty, \infty)$ means (and as far as I know it is not a standard notation, so you should not expect it to be understood without an explanation).Swati said:Prove that [FONT=MathJax_Math]F[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]∞[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main])
and [FONT=MathJax_Math]C[FONT=MathJax_Math]m[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]) are infinite dimensional vector spaces.
(From Elementary Linear Algebra by Howard Anton)