MHB Infinite dimensional vector space

Click For Summary
The discussion centers on proving that \( \mathbb{R}^{\infty} \) is an infinite-dimensional vector space. It begins by assuming \( \mathbb{R}^{\infty} \) is finite-dimensional, leading to a contradiction involving the linear independence of the basis elements \( \{e_1, e_2, \ldots, e_n\} \). The conversation then shifts to proving the infinite dimensionality of various function spaces, including \( F(-\infty, \infty) \) and \( C^{\infty}(-\infty, \infty) \). A method is suggested using functions with support in the unit interval to demonstrate the linear independence of transformed functions \( f_n(x) \). Overall, the thread emphasizes the importance of understanding the dimensionality of these mathematical spaces.
Swati
Messages
16
Reaction score
0
Prove that \(R^{\infty}\) is infinite dimensional.
 
Last edited by a moderator:
Physics news on Phys.org
Swati said:
Prove that Rinfinity​ is infinite dimeensional.

Please be more specific about what you think \(R^{\infty }\) is?

(Try assuming otherwise and deriving a contradiction)

CB
 
yes it is \(R^{\infty }\)
 
Swati said:
Prove that Rinfinity​ is infinite dimeensional.

Suppose otherwise, that is that \( \mathbb{R}^{\infty}\) is finite dimensional with dimension \(N\)

Now consider \( \{e_1, e_2, ... , e_n, ... \}\) (where \(e_i\) is the element of \( \mathbb{R}^{\infty}\) with a zero in every position except for the \(i\)-th which is 1). Clearly \(\{ e_1, ..,e_N\}\) are linearly independent and therefore form a basis for \( \mathbb{R}^{\infty}\). But \(e_{N+1}\) cannot be written as a linear combination of the \(e_1, ... , e_N\) etc.

CB
 
Last edited:
Prove that \(F({\infty},-{\infty})\), \(C({\infty},-{\infty})\), \(C^{\infty}({\infty},-{\infty})\)
and \(C^m({\infty},-{\infty})\) are infinite dimensional.
 
Last edited by a moderator:
Swati said:
Prove that \(F({\infty},-{\infty})\), \(C({\infty},-{\infty})\), \(C^{\infty}({\infty},-{\infty})\)
and \(C^m({\infty},-{\infty})\) are infinite dimensional.

Please provide context, what are these speces (try using words in addition to notation).

Presumably these are function spaces of some kind is so say so and which they are.

CB
 
Prove that [FONT=MathJax_Math]F[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]∞[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main])
and [FONT=MathJax_Math]C[FONT=MathJax_Math]m[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]) are infinite dimensional vector spaces.
(From Elementary Linear Algebra by Howard Anton)
 
Swati said:
Prove that [FONT=MathJax_Math]F[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]∞[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main])
and [FONT=MathJax_Math]C[FONT=MathJax_Math]m[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]) are infinite dimensional vector spaces.
(From Elementary Linear Algebra by Howard Anton)
You still have not explained what $F(-\infty, \infty)$ means (and as far as I know it is not a standard notation, so you should not expect it to be understood without an explanation).

For the spaces $C(-\infty, \infty)$ and $C^\infty(-\infty, \infty)$, let $f(x)$ be a nonzero $C^\infty$-function with support in the unit interval. For each integer $n$, define $f_n(x) = f(x-n)$. The functions $f_n$ form a linearly independent set and you can apply the Captain's argument in comment #4 above to show that these spaces are infinite-dimensional.

If the function $f$ can be chosen to be in the space $F(-\infty, \infty)$ (whatever that is), then the same approach will work to show that that space is also infinite-dimensional.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K