Swati
- 16
- 0
Prove that \(R^{\infty}\) is infinite dimensional.
Last edited by a moderator:
The discussion centers on proving that \( \mathbb{R}^{\infty} \) and various function spaces such as \( F(-\infty, \infty) \), \( C(-\infty, \infty) \), \( C^{\infty}(-\infty, \infty) \), and \( C^m(-\infty, \infty) \) are infinite-dimensional. Participants demonstrate that assuming \( \mathbb{R}^{\infty} \) is finite-dimensional leads to a contradiction by constructing a linearly independent set of vectors. Additionally, the discussion highlights the use of functions with support in the unit interval to establish the linear independence of function sets in the specified spaces.
PREREQUISITESMathematicians, students of linear algebra, and anyone interested in advanced topics in functional analysis and vector space theory will benefit from this discussion.
Swati said:Prove that Rinfinity is infinite dimeensional.
Swati said:Prove that Rinfinity is infinite dimeensional.
Swati said:Prove that \(F({\infty},-{\infty})\), \(C({\infty},-{\infty})\), \(C^{\infty}({\infty},-{\infty})\)
and \(C^m({\infty},-{\infty})\) are infinite dimensional.
You still have not explained what $F(-\infty, \infty)$ means (and as far as I know it is not a standard notation, so you should not expect it to be understood without an explanation).Swati said:Prove that [FONT=MathJax_Math]F[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]), [FONT=MathJax_Math]C[FONT=MathJax_Main]∞[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main])
and [FONT=MathJax_Math]C[FONT=MathJax_Math]m[FONT=MathJax_Main]([FONT=MathJax_Main]∞[FONT=MathJax_Main],[FONT=MathJax_Main]−[FONT=MathJax_Main]∞[FONT=MathJax_Main]) are infinite dimensional vector spaces.
(From Elementary Linear Algebra by Howard Anton)