MHB Inhomogeneous recurrence relation

Click For Summary
SUMMARY

The discussion focuses on the conversion of inhomogeneous recurrence relations to homogeneous forms, specifically within the context of linear second-order difference equations. A homogeneous difference equation is represented as an+2 + c1 an+1 + c0 an = 0, while an inhomogeneous equation is expressed as an+2 + c1 an+1 + c0 an = bn. Participants requested examples to clarify the conversion process, emphasizing the need for practical illustrations to enhance understanding.

PREREQUISITES
  • Understanding of linear second-order difference equations
  • Familiarity with homogeneous and inhomogeneous recurrence relations
  • Basic knowledge of mathematical notation and terminology
  • Experience with solving difference equations
NEXT STEPS
  • Study the method for solving inhomogeneous recurrence relations
  • Research specific examples of inhomogeneous difference equations
  • Explore the general procedure for converting inhomogeneous to homogeneous forms
  • Review resources on linear second-order difference equations
USEFUL FOR

Mathematicians, students of discrete mathematics, and anyone interested in understanding and solving recurrence relations, particularly in the context of difference equations.

andrew1
Messages
20
Reaction score
0
Hi all,

Could someone please explain to me the process involved in converting an inhomogeneous recurrence to a homogeneous recurrence, I'm completely confused as to how it works.Thanks
 
Physics news on Phys.org
andrew said:
Hi all,

Could someone please explain to me the process involved in converting an inhomogeneous recurrence to a homogeneous recurrence, I'm completely confused as to how it works.Thanks

For semplicity we suppose that we have linear second order difference equations. A homogeneous difference equation is written as...

$\displaystyle a_{n+2} + c_{1}\ a_{n+1}+ c_{0}\ a_{n} = 0\ (1)$

An inhomogeneous difference equation is written as...

$\displaystyle a_{n+2} + c_{1}\ a_{n+1} + c_{0}\ a_{n} = b_{n}\ (2)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
For semplicity we suppose that we have linear second order difference equations. A homogeneous difference equation is written as...

$\displaystyle a_{n+2} + c_{1}\ a_{n+1}+ c_{0}\ a_{n} = 0\ (1)$

An inhomogeneous difference equation is written as...

$\displaystyle a_{n+2} + c_{1}\ a_{n+1} + c_{0}\ a_{n} = b_{n}\ (2)$

Kind regards

$\chi$ $\sigma$

Could you possibly provide an example, this would help me understand it a bit better.
 
andrew said:
Could you possibly provide an example, this would help me understand it a bit better.

An example of linear homogeneous second order difference equation is here...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/recursive-sequences-finding-their-expressions-10478.html#post48615

Kind regards

$\chi$ $\sigma$
 
chisigma said:
An example of linear homogeneous second order difference equation is here...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/recursive-sequences-finding-their-expressions-10478.html#post48615

Kind regards

$\chi$ $\sigma$

Sorry, I meant an example of an inhomogeneous recurrence relation, I understand how to solve a homogeneous recurrence relation, but converting an inhomogeneous recurrence is where I am struggling.
 
andrew said:
Sorry, I meant an example of an inhomogeneous recurrence relation, I understand how to solve a homogeneous recurrence relation, but converting an inhomogeneous recurrence is where I am struggling.

A general procedure to attack inhomogeneous difference equation is illustrated here...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-ii-860.html#post4671

Kind regards

$\chi$ $\sigma$
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
7K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K