MHB Integer-Sided Right Triangle: 2001 Leg Length & Minimum Other Leg Length

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
The shorter leg of an integer-sided right triangle has length 2001. How short
can the other leg be?
 
Mathematics news on Phys.org
lfdahl said:
The shorter leg of an integer-sided right triangle has length 2001. How short can the other leg be?
my solution:
$2001=667\times 3=3\times 23\times 29$
so the other leg =$667\times 4=2668$
 
Last edited:
Thankyou Albert for the correct answer - and for your tireless participation!(Clapping)

Suggested solution:

Let $a,b,c$ be the sides of the triangle. Thus $2001 = a < b < c$. Set $c=b+m$. Then $(b+m)^2 = b^2+2001^2$ or $m(2b+m) = 2001^2$. So $m$ is a divisor of $2001^2=3^2\cdot 667^2$ and since $b= c-m$ is to be shortest ($> 2001$), $m = 667$ (the next largest divisor is $3 \cdot 667 = 2001$, which makes $b=0$) should be considered. Then $667(2b+667) = 9\cdot667^2$ gives $b=2668$ and $c=2668 + 667=3335$. One checks, that $2001^2+2668^2 = 3335^2$.
Comment: This triangle is the $(3,4,5)$ triangle since $(2001,2668,3335) = 667(3,4,5)$. But recognizing this, does not prove, that $2668$ is the shortest possible side larger than $2001$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
38
Views
3K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
6
Views
1K
Replies
20
Views
3K
Replies
1
Views
1K
Back
Top