Intermediate Axis Theorem.... fun to learn it again with You Tube

Click For Summary

Discussion Overview

The discussion revolves around the intermediate axis theorem, exploring its implications and applications in various contexts, including physics education, sports, and practical demonstrations. Participants share personal experiences and observations related to the theorem, highlighting its relevance in both theoretical and applied scenarios.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Experimental/applied

Main Points Raised

  • One participant shares a personal anecdote about learning the intermediate axis theorem and experimenting with a ping pong paddle to demonstrate the concept.
  • Another participant relates their understanding of the theorem to knife throwing, discussing the importance of rotational axes and the mechanics involved in achieving accurate throws.
  • A third participant mentions an application of the theorem in the context of the Le Mans automotive racetrack, suggesting a connection to real-world scenarios.
  • A later reply proposes that a video demonstration could enhance understanding, referencing a clip that illustrates the principles of rotation in axe throwing.

Areas of Agreement / Disagreement

Participants express individual perspectives and applications of the intermediate axis theorem, but there is no consensus on a singular interpretation or application. Multiple viewpoints and examples are presented without resolution of any disagreements.

Contextual Notes

Participants discuss various applications and personal experiences related to the theorem, but the discussion does not delve into the mathematical details or assumptions underlying the theorem itself.

Who May Find This Useful

Readers interested in physics, mechanics, sports dynamics, or practical applications of theoretical concepts may find this discussion engaging.

CPW
Messages
51
Reaction score
30
A friend of mine shared a YouTube video with me, saying he was sure I would love it. He described it as very strange with a rotating wingnut in the space station flipping over on its rotation axis, over and over, while it spun rapidly.

After watching the video, I verified I was taught the intermediate axis theorem in my undergraduate physics mechanics class.

Grabbing my ping pong paddle from my basement, I have been entertained by attempting to flip the racquet about the intermediate axis and had fun showing my family. You might too enjoy this topic.
 
  • Like
Likes   Reactions: Lnewqban, Klystron and BillTre
Physics news on Phys.org
I learned a bit about these theorems while practicing knife throwing. You throw a knife nearly the same as throwing a baseball or cricket ball; use your hand, arm and wrist to power the flight and your fingers to spin the ball or blade. Balls have spherical symmetry but knives have three distinct rotational axes.

The knife thrower cares primarily about rotation of the longest axis of the knife vertically aligned with direction of flight, rotating at an origin roughly 3cm along the blade measured from the interior end of the haft (handle) for a 20cm knife. This rotation origin corresponds to the knife's center of gravity (cog). The amount of rotation imparted to the knife, measured in 1/2 turns, depends on the distance to the target. When the knife is grasped by the blade, one half turn represents the shortest flight distance to strike point first.

A typical throw covers a distance of 9m (10 yards) in 1.5 turns, ending point first in the target. The throw begins in the hips, travels down the throwing leg and arm, continues with the 'flip' or rotation imparted by the fingers at release as the arm points toward the target, and finishes with a distinct follow through motion of the hand, arm and entire body much like a pitcher.
 
Last edited:
  • Like
Likes   Reactions: CPW
Here's an application of the theorem from the Le Mans automotive racetrack.

 
  • Wow
  • Like
Likes   Reactions: CPW and BillTre
I guess this idea deserves a vid. This clip from wiki shows an overhand axe throw but the same principles apply.
310px-slow_motion_axe_throwing-gif.gif


Axe throwing in slow motion

Notice the rotation along the longest axis for stability in flight and the exaggerated follow through of the entire body
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
6K