- #1
- 68
- 1
I was pondering over this problem about ratios and wondered what does 3/2 (oranges:apples say) actually means. I then understood after giving some thought that you DIVIDE the oranges with the no. of apples so that you get an idea about how many oranges correspond to 1 apple i.e. how much of one quantity is respect to another reference quantity (apple). And hence we get an idea as to how changes in one quantity affect the other i.e. say apples increase by 10 times and hence so will oranges by 10 times and hence the DIVISION operation. Is my thinking correct? Is there any other way people think about ratios?
I have to ask another thing. Continuing with the oranges:apples example. How to think intuitively when asked what is the ratio of oranges:total. Why is the ratio 3:5? Why do we have to add the no. of oranges and apples to get the denominator? Does 1 unit of the total represent a composite fruit containing a portion of the orange and apple and we are just concerned with finding out how much of orange is present in that composite fruit? I can't think in a concrete manner when it comes to this case.
I have to ask another thing. Continuing with the oranges:apples example. How to think intuitively when asked what is the ratio of oranges:total. Why is the ratio 3:5? Why do we have to add the no. of oranges and apples to get the denominator? Does 1 unit of the total represent a composite fruit containing a portion of the orange and apple and we are just concerned with finding out how much of orange is present in that composite fruit? I can't think in a concrete manner when it comes to this case.