Is [0,1] under the subspace topology Hausdorff, Compact, or Connected?

Click For Summary

Discussion Overview

The discussion revolves around the properties of the space [0,1] under the subspace topology generated by intervals of the form [a,b). Participants explore whether this space is Hausdorff, Compact, or Connected, with a focus on the implications of the topology's definition and its relationship to the standard topology on [0,1].

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant suggests that the intervals [c,d] are open in the subspace topology, leading to the conclusion that [0,1] is disconnected.
  • Another participant questions the fineness of the topology, asking how intervals like (1/2,1] can be open.
  • Some participants argue that the identity map from the new topology to the standard topology is continuous, but they express uncertainty about proving non-compactness without high-powered arguments.
  • There is a discussion about the nature of open sets in the subspace topology, with participants debating whether intervals (a,c) are open and how this affects the topology's strength compared to the standard topology.
  • One participant provides an example of a cover that demonstrates non-compactness, while others challenge the validity of the sets used in the example.
  • There is mention of sequences that do not converge in this topology, indicating potential issues with limit points.
  • Some participants express confusion about the intended meaning of the topology being discussed, particularly regarding the basis sets used.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the properties of [0,1] under the given topology. There are multiple competing views regarding the nature of open sets, compactness, and the implications of the topology's definition.

Contextual Notes

There are limitations in the discussion regarding the clarity of the topology being referenced, as well as unresolved mathematical steps related to the properties of the space. Participants express uncertainty about the implications of the topology on compactness and convergence.

Who May Find This Useful

This discussion may be of interest to students and educators in topology, particularly those exploring subspace topologies and their properties.

WWGD
Science Advisor
Homework Helper
Messages
7,785
Reaction score
13,064
Ok, sorry, I am being lazy here. I am tutoring intro topology and doing some refreshers. Were given the subspace topology on [0,1] generated by intervals [a,b) and I need to answer whether under this topology, [0,1] is Hausdorff, Compact or Connected. I think my solutions work , but I am looking for alternatives in case student does not understand mine. Let X represent [0,1] on the Standard topology while X_new is [0,1] under the basis generated by [a,b) .
First, we see that intervals [c,d] ; ##0\geq c< d\geq 1## are open, by intersecting intervals ##[a,x) \cap [0,1]##. It then follows that ##[0,1]_New=[0,a) \cup [a,1]## is disconnected. Hausdorff is relatively straightforward. Given## a,b \in [0,1] ; 0<a<b<1## Then we can use ##[0,a], [b,1]##( some accomodations when b=1)
It is compactness that seems harder. We have that X_new is strictly finer than X, since we saw (a,b) is open in X_new. Then the identity map from X_new to X is continuous, a continuous bijection.
Then all I have to show [0,1] is not compact in X_new is an argument by contradiction: A continuous bijection between compact and Hausdorff is a homeomorphism, which cannot happen, because the topologies X, X_ new are different . But this seems too high-powered an argument. Is there a simpler way of proving [0,1]_ new is not compact?
 
Physics news on Phys.org
It doesn't look to me that this topology is finer than the standard one. How do you show that ##(1/2,1]## is open, for example?

You also mention considering intervals ##[c,d]## where ##c\leq 0## and ##d\geq 1##, which are not subspaces of ##[0,1]## if the inequalities are strict, so I think I'm misunderstanding something.
 
  • Like
Likes   Reactions: WWGD
I was thinking intervals ##(a,c)## are open. Let ##a<b<c##. Then ##b \in [\frac{b-a}{2}, \frac{c-b}{2})\subset (a,c)##, so that ##(a,c)## is open in this topology. This alone makes it weaker than the standard topology. So that the identity map between ##[0,1]_new## to ##[0,1] ## is continuous, if I haven't botched anything. Then I may use , by contradiction, assuming## [0,1]_new ## is compact, that a continuous bijection between compact and Hausdorff is a homeomorphism. But this last seems too heavy-handed and I would prefer something simpler.
 
WWGD said:
I was thinking intervals ##(a,c)## are open. Let ##a<b<c##. Then ##b \in [\frac{b-a}{2}, \frac{c-b}{2})\subset (a,c)##, so that ##(a,c)## is open in this topology. This alone makes it weaker than the standard topology.

I don't think the open intervals ##(a,b)## generate the standard topology on ##[0,1].## You also need to include the intervals ##[0,a)## and ##(b,1]## to get the standard topology.
 
  • Like
Likes   Reactions: WWGD
Infrared said:
I don't think the open intervals ##(a,b)## generate the standard topology on ##[0,1].## You also need to include the intervals ##[0,a)## and ##(b,1]## to get the standard topology.
Ok thanks, it's been a while since I've seen this material. [0,a) would follow by intersecting [0,1] with, e.g., (-1,a). Wouldn't we also get (b,1] by intersecting (b,2) with [0,1]?
But going back to compactness, do you have other ideas?
 
The space is not compact, consider
$$[0,1]= \bigcup_n [1/n,2)$$
 
  • Like
Likes   Reactions: WWGD
WWGD said:
[0,a) would follow by intersecting [0,1] with, e.g., (-1,a). Wouldn't we also get (b,1] by intersecting (b,2) with [0,1]?
But ##(b,2)## isn't a subset of ##[0,1].##

WWGD said:
But going back to compactness, do you have other ideas?
I'm trying to understand what the topology is before giving an argument. But if ##[a,b]## (in particular singletons) are all open like you claim, then ##\left\{ [1,1-1/n): n=2,3,...\right\}\cup\left\{ \{1\}\right\}## is an open cover with no finite subcover.

@Office_Shredder The sets in your union are not subspaces of ##[0,1].##
 
  • Like
Likes   Reactions: WWGD
I assume from the posts above that the space is actually inheriting the topology induced from ##\mathbb{R}## that has the same opens sets.

And you're right, I wrote down the wrong thing. Your example is better.
 
  • Like
Likes   Reactions: WWGD
Infrared said:
But ##(b,2)## isn't a subset of ##[0,1].##I'm trying to understand what the topology is before giving an argument. But if ##[a,b]## (in particular singletons) are all open like you claim, then ##\left\{ [1,1-1/n): n=2,3,...\right\}\cup\left\{ \{1\}\right\}## is an open cover with no finite subcover.

@Office_Shredder The sets in your union are not subspaces of ##[0,1].##
But , IIRC, for subspaces, a set is open if it is the intersection of a host space open set with the subspace. But you can also find basis elements to show either is open. For [a,c) ; 0<=a<c<1, just use a ball [0, (1-c)/2), so these are open. Similar for (a,1].
And I was hoping for an argument that used that [0,1]_new was weaker than [0,1], to show compactness.
 
  • #10
WWGD said:
But , IIRC, for subspaces, a set is open if it is the intersection of a host space open set with the subspace.

Yes, this is the definition of the subspace topology.

WWGD said:
But you can also find basis elements to show either is open. For [a,c) ; 0<=a<c<1, just use a ball [0, (1-c)/2), so these are open. Similar for (a,1].
I don't understand what you're writing here. Can you explain why ##(a,1]## is open in this topology, as it would have to be for this topology to be finer than the standard one?

Office_Shredder said:
I assume from the posts above that the space is actually inheriting the topology induced from ##\mathbb{R}## that has the same opens sets.
Right, I'm trying to figure out if this is the intended meaning, instead of literally the topology generated by the intervals ##[a,b)## in ##[0,1].##
 
  • Like
Likes   Reactions: WWGD
  • #11
Infrared said:
Yes, this is the definition of the subspace topology. I don't understand what you're writing here. Can you explain why ##(a,1]## is open in this topology, as it would have to be for this topology to be finer than the standard one?Right, I'm trying to figure out if this is the intended meaning, instead of literally the topology generated by the intervals ##[a,b)## in ##[0,1].##
Ok, my bad, I've been kind of sloppy. Let me be more clear from now on.
 
  • #12
WWGD said:
Ok, my bad, I've been kind of sloppy. Let me be more clear from now on.

But wait, which topology is it?
 
  • Like
Likes   Reactions: WWGD
  • #13
Office_Shredder said:
But wait, which topology is it?
We start with the topology generated by the basis sets [a,b) on the Real line and then give [0,1] the subspace topology .
 
  • #14
WWGD said:
We start with the topology generated by the basis sets [a,b) on the Real line and then give [0,1] the subspace topology .
Okay, that is not the topology you described in your OP! But anyway in this case I show non-compactness in post 7.
 
  • #15
As an interesting point, the sequence ##1/2-1/n## does not converge to ##1/2## in this topology, since ##[1/2,1)## is an open neighborhood of ##1/2## which does not contain any elements of the sequence. Instead this sequence has no limit point.
 
  • Like
Likes   Reactions: WWGD
  • #16
Just for the fun of it, let's check the metrizability of [0,1] under this topology. There are suficient conditions given is some metrization theorems IIRC. Nagata -Smirnov, Others. I only remember them vaguely.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K