MHB Is a dense, locally compact subspace always open in a compact Hausdorff space?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
In a compact Hausdorff space X, a dense, locally compact subspace S is shown to be open. The discussion highlights that the properties of compactness and local compactness play crucial roles in this conclusion. Janssens provided a correct solution, demonstrating the relationship between the density of S and its openness in X. The problem emphasizes the significance of these topological concepts in understanding the structure of subspaces. Overall, the findings reinforce the interconnectedness of compactness, local compactness, and openness in topology.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $X$ be a compact Hausdorff space. If $X$ contains a dense, locally compact subspace $S$, show that $S$ is open in $X$.
-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Janssens. You can read his solution below.
Let $p \in S$ be arbitrary. By local compactness there exists an open subset $U$ of $S$ such that $p \in U$ and the closure $\overline{U}^S$ of $U$ in $S$ is compact in $S$, hence in $X$ as well. Since $X$ is Hausdorff, it follows that $\overline{U}^S$ is closed in $X$, so
$$
\overline{U} \subseteq \overline{U}^S,
$$
where the left-hand side (without the superscript) denotes the closure in $X$.

Secondly, since $U$ is open in the subspace topology of $S$, there exists an open set $O \subseteq X$ such that $U = O \cap S$. We show that $O \subseteq S$. We note that
$$
O \subseteq \overline{O \cap S}.
$$
(Indeed, let $x \in O$ be arbitrary and let $B \subseteq X$ be any open set with $x \in B$. Since $O$ is open and $S$ is dense in $X$, the open set $B \cap O$ intersects $S$. Hence $B \cap (O \cap S) \neq \emptyset$ so $x \in \overline{O \cap S}$.) Next, using the two previously displayed equations in order, we obtain the inclusions
$$
O \subseteq \overline{O \cap S} = \overline{U} \subseteq \overline{U}^S \subseteq S.
$$
This shows that $p$ is an interior point of $S$ with respect to $X$, so $S$ is open in $X$.

Remarks: Compactness of $X$ is not needed. Also, I recall this problem from a lecture I enjoyed in the past, so I do not want to pretend the above solution is entirely my own.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
4K
Replies
1
Views
3K