Undergrad Is an Abelian Group Divisible?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
An abelian group is defined as divisible if for every natural number n and element g in the group, there exists an element x in the group such that nx equals g. The discussion revolves around proving that an abelian group G is injective if and only if it is divisible. No responses were provided to the problem of the week, indicating a lack of engagement or understanding among participants. The original poster shared their solution, suggesting they have a grasp of the topic. The thread highlights the relationship between injectivity and divisibility in abelian groups.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
An abelian group $G$ is called divisible if for every $n\in \Bbb N$ and $g\in G$, there exists $x\in G$ such that $nx = g$. Show that for abelian groups $G$, $G$ is injective if and only if $G$ is divisible.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.

Let $G$ be an abelian group.

Suppose $G$ is injective. Fix $n\in \Bbb N$ and $g\in G$. Let $\phi : \Bbb Z\to \Bbb Z$ be given by $\phi(m) = nm$, and $\psi : \Bbb Z\to G$ be defined by $\psi(m) = mg$. Since $\phi$ is a monomorphism, injectivity of $G$ allows for a lift $\alpha : \Bbb Z \to G$ such that $\alpha(\psi(m)) = \phi(m)$ for all $m\in \Bbb Z$. So if $x = \alpha(1)$, then $nx = \alpha(n) = \alpha(\psi(1)) = \phi(1) = g$. Since $n$ and $g$ were arbitrary, $G$ is divisible.

Conversely, suppose $G$ is divisible. Let $\phi : A \to B$ be a monomorphism of abelian groups and $\psi : A \to G$ be a homomorphism. Without loss of generality, assume $A\subset B$. Let $\mathcal{C}$ be the collection of all pairs $(X,f)$ where $X$ is an abelian group with $A \subset X \subset B$ and $f : X \to G$ is an homomorphic extension of $\phi$. Partially order $\mathcal{C}$ by setting $(X,f) < (X', f')$ if and only if $X\subset X'$ and $f'$ is a homomorphic extension of $f$. Then $\mathcal{C}$ is inductive ordered set, and hence (by Zorn's lemma) $\mathcal{C}$ has a maximal element $(\tilde{X},\tilde{f})$. Suppose $\tilde{X} \neq B$. Then $B\setminus \tilde{X}$ contains some element $x_0$. If $x_0$ has the property that $nx_0\in \tilde{X}$ implies $n = 0$, then $\tilde{f}$ has a homomorphic extension $\tilde{F} : \tilde{X} + \Bbb Z x_0 \to G$ such that $\tilde{F}(x + nx_0) = \tilde{f}(x)$ for all $x\in \tilde{X}$ and $n\in \Bbb Z$. Then $(\tilde{X} + \Bbb Z x_0, \tilde{F})$ is a an element of $\mathcal{C}$ greater than $(\tilde{X}, \tilde{f})$, contradicting maximality of $(\tilde{X}, \tilde{f})$. On the other hand, if there exists an $n\in \Bbb Z$ such that $nx_0\in \tilde{X}$, then we may consider $n_0$, the least positive integer $n$ such that $nx_0\in \tilde{X}$. Since $G$ is divisible, there exists a $g\in G$ such that $n_0 g = \tilde{f}(n_0x_0)$. The mapping $F : \tilde{X} + \Bbb Z x_0 \to G$ given by $F(x + nx_0) = f(x) + ng$ for all $x\in \tilde{X}$ and $n\in \Bbb Z$, is a homomorphic extension of $\tilde{f}$. Yet again, this contradicts maximality of $(\tilde{X}, \tilde{f})$. Therefore $\tilde{X} = B$ and $\tilde{f}\circ \phi = \psi$. Since $\phi$ and $\psi$ were arbitrary, $G$ is injective.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K