MHB Is $H_n(X)$ Torsion Free if $H_{n-1}(X)$ is Torsion Free?

  • Thread starter Thread starter Euge
  • Start date Start date
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Suppose $X$ is a closed connected orientable manifold of dimension $2n$. Prove that if the homology group $H_{n-1}(X)$ is torsion free, then $H_n(X)$ is also torsion free.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Here is a hint: Consider using Poincaré duality and the universal coefficients theorem.
 
No one answered this week's problem. You can read my solution below.

By Poincaré duality and the universal coefficients theorem, it follows that
$$H_n(X) \approx H^n(X) \approx H_n(X)^{\text{free}} \oplus H_{n-1}(X)^{\text{torsion}}$$
Since $H_{n-1}(X)$ is torsion-free, then $H_{n-1}(X)^{\text{torsion}} = 0$. Therefore $H_n(X) \approx H_n(X)^{\text{free}}$, showing that $H_n(X)$ is also torsion-free.
 
Back
Top