MHB Is $(\log_2(\sqrt{5}+1))^3$ Greater Than $1+\log_2(\sqrt{5}+2)$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Comparison
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Compare the numbers $X=(\log_2(\sqrt{5}+1))^3$ and $Y=1+\log_2(\sqrt{5}+2)$ and determine which is larger.
 
Mathematics news on Phys.org
anemone said:
Compare the numbers $X=(\log_2(\sqrt{5}+1))^3$ and $Y=1+\log_2(\sqrt{5}+2)$ and determine which is larger.

The golden ratio (which I'll denote here as $\varphi$) satisfies $1.61<\varphi<1.62$ and is equivalent to$\dfrac{\sqrt5+1}{2}$, so we have

$$(\log_2(2\varphi))^3=(1+\log_2\varphi)^3=1+3\log_2\varphi+3\log_2^2\varphi+\log_2^3\varphi$$

Subtracting $1$ and approximating with $\sqrt2$ we have

$$X-1>\dfrac32+\dfrac34+\dfrac18=2.375$$

Also,

$$Y-1=\log_2(\sqrt5+2)=\log_2(2\varphi+1)<\log_24.24<\log_217-2<2.375$$

as required.
 
Thanks greg1313 for participating and thanks for your creative solution!(Cool)

I will wait for a bit before showing my solution and also the other insightful solution, just in case there are others who wanted to take part in this challenge.:)
 
My solution:

First, note that $5\gt 1$, which gives $2\sqrt{5}\gt 2$ and further translates into $5+2\sqrt{5}+1=(\sqrt{5}+1)^2\gt 8$, which implies $\sqrt{5}+1\gt 2^{\frac{3}{2}}$, taking base 2 logarithm of both sides of the inequality we get:

$\log_2(\sqrt{5}+1)\gt \dfrac{3}{2}$

$(\log_2(\sqrt{5}+1))^3\gt \left(\dfrac{3}{2}\right)^3=\dfrac{27}{8}$

On the other hand, we have

$$\frac{5}{2}\gt \sqrt{5}$$

$$\frac{9}{2}=\frac{5}{2}+2\gt \sqrt{5}+2$$

$$\therefore \log_2\left(\frac{9}{2}\right)\gt \log_2(\sqrt{5}+2)$$

$$ \log_29 -1\gt \log_2(\sqrt{5}+2)$$

$$1+ \log_29 -1\gt 1+\log_2(\sqrt{5}+2)$$

$$ \log_29 \gt 1+\log_2(\sqrt{5}+2)$$

If we can prove $$\dfrac{27}{8}\gt \log_29$$, then we can say $X\gt Y$.

Note that $2^{27}=(2^5)^{5+2} \gt 4(3^3)^5 \gt 3^{16}=9^8$, this suggest $$\dfrac{27}{8}\gt \log_29$$ First, note that $5\gt 1$, which gives $2\sqrt{5}\gt 2$ and further translates into $5+2\sqrt{5}+1=(\sqrt{5}+1)^2\gt 8$, which implies $\sqrt{5}+1\gt 2^{\frac{3}{2}}$, taking base 2 logarithm of both sides of the inequality we get:

$\log_2(\sqrt{5}+1)\gt \dfrac{3}{2}$

$(\log_2(\sqrt{5}+1))^3\gt \left(\dfrac{3}{2}\right)^3=\dfrac{27}{8}$

On the other hand, we have

$$\frac{5}{2}\gt \sqrt{5}$$

$$\frac{9}{2}=\frac{5}{2}+2\gt \sqrt{5}+2$$

$$\therefore \log_2\left(\frac{9}{2}\right)\gt \log_2(\sqrt{5}+2)$$

$$ \log_29 -1\gt \log_2(\sqrt{5}+2)$$

$$1+ \log_29 -1\gt 1+\log_2(\sqrt{5}+2)$$

$$ \log_29 \gt 1+\log_2(\sqrt{5}+2)$$

If we can prove $$\dfrac{27}{8}\gt \log_29$$, then we can say $X\gt Y$.

Note that $2^{27}=(2^5)^{5+2} \gt 4(3^3)^5 \gt 3^{16}=9^8$, this suggest $$\dfrac{27}{8}\gt \log_29$$ and we're hence done as we can conclude by now that $X\gt Y$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top