MHB Is My Work Correct for These Particular Solutions?

  • Thread starter Thread starter shamieh
  • Start date Start date
shamieh
Messages
538
Reaction score
0
I just need someone to verify that my work is correct.

Note that the general solution to $y'' - y = 0$ is $y_h = C_1e^t + C_2e^{-t}$

In the following, use the Method of Undetermined Coefficients to find a particular solution.
b) $y'' - y = 4sint + 2cost$

Solution:
$y_p = -cost - 2sint$
c)$y'' - y = e^t$

Solution:
$y_p = \frac{1}{2} te^t$

d) Give a particular solution to $y'' - y = t^2 + 4sint + 2cost + e^t$

Solution:
$ y_p = -t^2-2 -cost - 2sint + \frac{1}{2}te^t$
 
Physics news on Phys.org
Yes, that's correct. (Yes)
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K