MHB Is $p\equiv 3\pmod{4}$ a condition for $\pi$ to be an even permutation?

MountEvariste
Messages
85
Reaction score
0
Let $p$ be an odd prime number such that $p\equiv 2\pmod{3}.$ Define a permutation $\pi$ of the residue classes modulo $p$ by $\pi(x)\equiv x^3\pmod{p}.$ Show that $\pi$ is an even permutation if and only if $p\equiv 3\pmod{4}.$
 
Mathematics news on Phys.org
There are more elementary variants, but this one is the shortest:

Since taking the third power fixes $0$, the sign of $\pi$ is determined by the sign of its action on the nonzero residues modulo $p$. As $\mathbb{F}_{p}^{\times}$ is a cyclic group of order $p − 1$, $\pi$ is the same as multiplication by $3$ on $\mathbb{Z}/(p − 1)$. This permutation is the same as the action of Frobenius element at $3$ acting on $\mu_3 = \left\{w_1, · · · , w_{p−1}\right\}$, the set roots of $f(x) = x^{p-1}-1$. Its action on the roots of this polynomial is even iff it acts trivially on the square root of the discriminant of this polynomial, which is

$$d:= \prod_{i < j} (w_i - w_j)$$

This, in turn, is true iff $3$ splits in the extension $\mathbb{Q}(d)$. It's not hard to see that

$$(-1)^{\binom{p-1}{2}}d^2 = \prod_{i,j=1}^{p-1}(w_i-w_j) = \prod_{i=1}^{p-1}f'(w_i) = -(p-1)^{p-1},$$

which is a square times $−1$.Therefore, if $p \equiv 3 \mod {4}$, then $\binom{p-1}{2}$ is odd, so adjoining the square root of the discriminant gives $\mathbb{Q}$, so $3$ splits tautologically, and the permutation is even. If $p \equiv 1 \mod{4}$, then the extension is $\mathbb{Q}(i)$, in which $3$ does not split, so the permutation is odd.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top